INTRODUCTION

A Programmer's Guide to the X-6 Assembly System is concerned
with the preparation of a data processing program for the X-6
assembly on a USS 80 or 90 Tape System. For the most part,
this consists of the coding of the object program according
to X-6 symbolic and relative coding conventions and the pre-
paration of the punched card input deck to be processed by
the X-6 Assembly System program. Such preassembly prepara-
tions are covered in detail. An understanding of the reasons
for these preparations, however, is only possible through a
general knowledge of the processing steps during the actual
assembly by the X-6 system. For this purpose, a general des-
cription of the X-6 processing has been included. The details
of the processing can be found in the flow charts of the X-6
Assembly System.

Most of the examples used are applicable to both the USS 80,
80 Tape, and 90 Tape computers. Some,however, are inimical

. ‘ . .
to one computer (fOI’ example’ three part alphabetics and in-

< y‘-‘-l- (5] M-\-yLJ.MU\J U oA A LaNA e e
terlaces).

Much of the description and terminology used in this manual
presupposes that the reader has a general knowledge of machine
coding and operation of the USS 90/80 computers.

ii U 17741

INTRODUC
GENERAL
X-6 INST
ADDRESSI
I. Ins
A.
B.

C.
D.
E.
IT. Dat
A,
B.
C.

TABLE OF CONTENTS

TION o o o o o o o o o o s o o o
DESCRIPTION =« &+ ¢ & o o o o o &
RUCTION CODES + & & o o o o o &
NG ¢ o« o o o o o o o o o o o s @
truction Addressing
Space AAdressing « « o ¢ « o o o
Tag AAAressing « « o« « o o o o o
1. Permanent Tags .+ + o &« & « &
2. Temporary TagsS =+ « s o o o« =
Overflow Addressing . e e e e e
Absolute Addressing . « « o« o .
Register Addressing .« « « « .« &
a AddTesSIng « ¢« ¢ ¢ o o o o o .

Working Storage and Constant Addressing

Table Entry Addressing . . « .
Interlace Addressing . « « + o &

LATENCY MINIMIZATION o ¢ o ¢ & o o o o &

CLOCK MO

DIFICATION o ¢ o ¢ « o o o o o &

LTBRARY ROUTINES & & & ¢ o ¢ o o o o o o
ASSEMBLY INPUT CABRDS « & ¢ o o« o o o s &
I. Symbolic Deck Organization

ITI. Inp
A.
B.
C.
D.
E.
F.
G.
H.
I.
Je

U 1774 .1

ut Card Format « ¢« ¢« ¢« ¢« o o & &
Label Card, Card Type 1
Restrict Card, Card Type 2
Tag Equals Card, Card Type 3 . .
Interlace Card, Card Type 4 . .
Tables Card, Card Type 5 « « «
Specifications Card, Card Type 6
Operation Header Card, Card Type
Detail Card, Card Type 8

7

L]

Operation Sentinel Card, Card Type

End-of-Run Sentinel Card, Card Type 10

®

L]

9

ii

10
10
10
12
12
i
15
16
17
18
19
23
24
28
31

141

43
Ly
LY
L5
L7
48
50
51

52
53
55
56

iil

OUTPUT CARD FORMAT . « . « « &
PROGRAMMING PROCEDURES
I. Flow-Charting . « « . &
IT. Coding « « o o o o & o &

PREPARATION FOR THE X-6 ASSEMBLY .
OPERATING INSTRUCTIONS FOR THE X-6

I. Loading and Assembly . .
IT. Error Codes .« « o o o
IITI. Stop Codes « o o o o o
IV. X-6 Storage Layout . . .

ASSEMBLY

APPENDIX I - OPERATIONS AND SUBROUTINES
WITHIN THE X-6 ASSEMBLY SYSTEM PROGRAM . .

APPENDIX II - X-6 FLOW-CHARTS

iv

.. .58
. . .58
e e . 59
.« . 60
. . . 6
. . . 61
... 62
. . . 63
« o . 6k

U 17741

GENERAL DESCRIPTION

When the X-6 coding of a data processing program or operation
has been completed, this coding, and any further information
required by the X-6 Assembly System for the processing of the
coding, 1s punched on appropriate input card types. These in-
put cards are then placed in a specific order in the input
deck and the actual assembly is begun.

Each card type will be processed in a specific way:

GET FIRST 1997 weeL fres| miTiaLize FILL ALL TABLES

HANDLE LABEL WITH PROPER
CARD & EDIT CARD? =1 caro - PRINT ™™ FiLL Sneols
¢ - UIE {rvee 1) IFT

PRN
.
]
, L .
1
1]
.
1]
]
1]
1]

i
W8 | ERROR
b sToP

The fields of the label card are ﬁlaced in the output interlaces
without modification.

...

- GET NEXT 15 17 restricT 5] Fumher 1T -~ GET NEXT —_— L T _m
" CMOLEDIT oo CARD? PRINT ._ enrey reow kol s RESTRICT ENTRY *
\"_/ o - GiE {rvee 2) FIE - PRN U/ RESTRICT CARD PRE &/

NO_MORE 1

g ENTRIES Yes N
)

L}

L}

]

1]

]

i Restrict card entries are used to mark off locations in the storage
. availability table. No restricted location will be assigned when
i absolute addresses are generated.

GET NEXT 1S IT TAG ES| FURTHER EDIT GET NEXT ISITA LY HANDLE A e
CARD & EDIT EQUALS CARD? PRINT ENTRY FROM SENTINEL? l—e{ TAG EQUALS "
GNC - UIE (TYPE 3) FIE - PRN TAG EQUALS CARD ENTRY PTE
e -
f ud f ENTRIES | YES

--- P et b D R L Rl T
Tag equals card entries are filed in internal tables equated to their

absolute addresses. The absolute addresses are used to mark off E
locations in the storage availability table. '

GéT NEXT
CARD & EDIT
GNC - UIE

future

in order.

use.

GET NEXT
CARD § EDIT
GNC - UIE

the storage availability table.

FURTHER EDIT GET 2 WORD
PRINT ENTRY FROM
FiE - PRN TABLE CARD

IS 1T A YES
TABLE CARD? |l
(TYPE 5)
]

storage availability table.

Interlace card entries are used to mark off interlace positions in
The origins are filed for future use.

GET WEXT 1S 1T AN YES| rurTHER EDIT GET NEXT P o HANDLE AN o
CARD & EDIT INTERLACE CARD? o PR INT ENTRY FROM sEnrinees [P] INTERLKE ENTRY "
GHC - UIE (TYPE 4) FIE - PRN INTERLACE CARD PIE
NO_MORE :
o ENTRIES YES !
]
1
- .
1
1
1
e mm m e e oo e e e e e e e e m e m e m e mmmmmmmmam e mm e a e e mmmm e m e ma e e emeemmmmmmme e -

IS IT A
SENTINEL?

HANDLE A
TABLE ENTRY
TAB

NO_MORE
@ENTR 1ES

END OF "ONE

TIME™ WORK
INITIALIZE

FOR QUTER LOOP

i Operation Header card entries are placed in the output interlaces.
i Initial conditions are set for Detail card processing (MC 9 5N).

|AW]

1S 1T A YES| FURTHER EDIT GET NEXT 1S ITA "
SPECS CARD? =] PRINT ENTRY FROM SENTINEL? |]
(TYPE 6) FIE - PRN SPECS CARD
WO MORE
o ENTRIES Yes

1S 1T A ves
@ HEADER CARD? =
(TYPE 7)

Specifications card entries are filed
stitution later.

f YES

Table card entries are also used to mark off positions in the
Increments and origins are filed for

Card types 1 through 5 must be received by the X-6 Assembly System
After the Label card has been processed (MC 1 IN), if a
card is received that 1s not a type 2, 3, 4, or 5, the assumption
is made that all the above processing has been accomplished.

HANDLE A
SPECS ENTRY
PSE

EDIT & PRINT
INITIALIZE
FOR INNER LOOP

N0

End input card signals the last card of the program being assembled

program.

1,
2.

Detail cards contain the instruction lines and constants of a
Only Detail card processing will produce output punching.
The four basic steps in Detail card processing are:

Handle the a address.

Analyze the instruction code and separate instructions
from constants. For instructions, obtain a code word
to control further processing by the use of the
necessary increment needed between the a, m, and ¢

addresses and substitute the computer code equivalent
of the mnemonic code. Determine if one or both of the

m and ¢ addresses are significant.
Handle the m address if necessary.

Handle the ¢ address if necessary.

GET NEXT 1SITA ves HANDLE A
@ carD& EDIT F==f oETAiL car0? b= OETAIL caRD TS 0
6XC - UIE (TYPE 8) POC

pow

IS IT AN 00 ALL END
i T
END OP. CARD? e OF OPERATION ﬂ'}'}gilfoﬁf’
(Tvee 9) WORK
g l " T
ERROR
STOP

DO ALL EMO FINAL STOP 4S8
L4}
lf: 0F RUN —— CODE ____®
WORK assg

start execution of the assembled program.

L

]

]

i It contains the instruction to be used by the loading routine to
1

1]

1

U 1774 1

X-6 INSTRUCTION CODES

X-6
Mnemonic Computer Minimum
Code Code Word Times ' Function

Arithmetic

ADD m ¢ 70 5 Add (a) to (raA). If over-
flow, next instruction is
c+l.

SUB m c 75 5 Subtract (m) from (rA).

If overflow, next instruc-
tion is c+1.

MUL m ¢ 85 105 Multiply (rL) by (m).

DIV m ¢ 55 115 Divide (m) by (rL). If
overflow, next instruction
is e+1.

Transfer

ILDA m c 25 L Load rA: (m)=——sTA.

DX m c 05 L Load rX: (m)=—srX.

IDL m c 30 L Load rL: (m)=—rL.

STA m ¢ 60 4 Store rA: (rA)=—m 1 cannot

STX m ¢ 65 L Store rX: (rX)=——m} be regis-

. ter ad-

STL m c 50 L Store rL: (rL)=—smn dress.

ATL - ¢] 77 3 (rA)=——1L.

CTA m - 23 3 (rC)=—>rA.

CAA m - 36 3 Clear A to zeros: @—srA.
Original sign remains.

CLA m - 26 3 Clear rA to zeros: @—srA.
Sign +.

CLX m - 06 3 Clear rX to zeros: @=—»rX.
Sign +.

CLL m - 31 3 Clear rL to zeros: @—»rl.
Sign +.

CAX m - 86 14 Clear rA and rX to zeroes.
Sign of rL goes to rA and
rX.

" T 17741

X-6

Mnemonic Computer
Code Code

Translate

CTM - c 12

MTC - c 17

™M - c C3

™X - c c1

Index Registers

LIR m c

Absolute
Address

IIR m c

02

07

Minimum
Word Times

(O8]

Function

Translate card to machine
(computer) code: 80CC (ra,
rL, rX)=—MC-6 (ra, rX);
=1L,

te machine (com-
to card code; MC-6
(rA, rX)—=80CC (rA, rL,
rX).

Am

Translate XS-3 code to
machine (computer) code:
X8-3 (rA)=—=MC(ra).

Translate machine (com-
puter) code to XS-3 code:
MC(rA) —»XS-3 (ra).

Load index register: m
portion of instruction
word —=rBi.

Increment Index Register:

m portion of instruction

word +(rBi)=——srBi and to

m portion of rAy @—
balance of rA.

Note: When either an LIR or IIR instruction is used, the m ad-
dress portion must be an absolute address.

Comparison
TEQ m c
TGR m c

U 1774 1

82

87

Test (rA) and (rl) for
equality: If =, next in-
struction at m. If #,
next instruction at c.

Test (rA) and (rL) for
magnltude

If (rA) > (rL), next in-
struction at m.

If (rA) < (rL), next in-
struction at ¢,

X-6

Mnemonic Computer Minimum
Code Code Word Times Function

Logical

BUF m ¢ 20 L Superimpose (m) on
(I‘A)—»I‘A‘.

ERS m ¢ 35 L Extract (m) from
(rA)=——rA.

SHR AAAnn c 32 3+nn Shift right nn places:
(rA)—=(rX)—rA. nn
is number of places to
be shifted within range
00 through 10.

SHL AAAnn c 37 3+nn Shift left nn places:
(rA)e—@. nn is number
of places to be shifted
within range 00 through
10.

Zp - ¢ 62 L Zero suppress commas and
zeros. MC-6 in raA, rX.

JMP m = 00 2 Jump to m.

STP m ¢ 67 - Stop. m or ¢ is alternative.

next instruction (re-
quires manual interven-
tion).

High-Speed Printer
PBT nm c 27 Printer test. If printer
free, next instruction
at m. If printer is not

free, next instruction
at c.

= OV
e |e
Hy
B o
e o

0
|.

PFD AAAnn c 16 4 Advance nn lines.
nn is within the range 00
through 79.
If abnormal operation of
HS?, next instruction is
c+1.,

PRN PyOnn c 11 592 Advance and print.
y=Print interlace (O
through 9).
nn=number of lines to ad-
vance (AO through 79).
If abnormal operation of
HSP, next instruction at

c+l.

6 ' U 17741

X-6
Mnemonic
Code

Computer
Code

High-Speed Card Reader

HBT m e 4o
HBU HnOO4 c 96
HCC m c 72
HSS AAnQO ¢ L7
Read-Punch Unit

RBT m c 22
RBU RnO0d ¢ 46
RCC 0On004d c 81
U 1774 .1

Minimum
Word Times

>

Fw

if

203
215

if
if

if c.

113

Qi
Tl
— O

3 if ec.
4 if m.

Bt V)
'—l
H

203 if
215 if

QQu

- O

Function

HSR buffer test: if
buffer loaded, next in-
struction at mj if buffer
not loaded, next instruc-
tion at c.

HSR buffer unload.

n=HSR Interlace (O through
9).

d=0 if no automatic trans-

lation.

1 if automatic transla-

tion.

HSR card cycle. If HSR
interlock, next instruc-
tion at m.

If HSR not interlocked,
next instruction at c.
If abnormal operation of
HSR, next instruction is
ct+l,

HSR stacker selection.
n=stacker 0, 1, or 2.

J
g
=
24

If bu fer loaded, next
instruction at m.

If buffer not loaded,
next instruction at c.

RPU buffer unload.

n=RPU input interlace
(O through 9).

d=0 if no automatic
translation.
1 if automatic transla-
tion.

RPU card cycle.
n=RPU output interlace.
(0 through 9).
d=0 if no automatic
translation.
1 if automatic transla-
tion.

Mnemonic Computer Minimum
Code Code Word Times Function

If abnormal operation of
RPU, next instruction is

c+1.,
RSS - ¢ 57 3 RPU select Stacker 1.
Magnetic Tape
TST m ¢ c2 3 if c. Test servo availability.
4 if m. If servo free, next in-

struction at m. If servo
not free, next instruc-
tion at c.

TBL xn000 ¢ Cé6 205 Tape buffer load.
x=T or Z.
n=Tape interlace (O
through 9).

TBT m c c7 3 if c. Test tape buffer.
4 if m, If buffer not available,
next instruction at ec.
If available, next
instruction at m.
TRW AAXyO F2 600 ms. Rewind tape to first
block condition.
xzsirvo number (0 through
9).
y=0 if rewind without in-
terlock.
2 if rewind with inter-
lock.

Q

TBU xn000 ¢ F6 205 Tape buffer unload.
x=T or Z.
n=Tape interlace (O
through 9).
If abnormal operation of
tape, next instruction
is ct+1.

TRD AAXyz c G2 17 Read one block from servo x
into tape buffer band.

x=servo number (O through

9).
y=0 if USS mode.
5 if UNIVAC mode.

8 U 17741

X-6

Mnemonic Computer
Code Code
TWR xxyO ¢ H2

Minimum
Word Times

17

Function

z=direction and gain:

O=forward normal.
1=forward low.
2=forward high.
5=backward normal.
6=backward low.
7=backward high.

Write one block from the
tape buffer band onto the
tape.
x=s§rvo number (O through
9).
y=mode and density.
0=USS 250 cpi.
5=UNIVAC 250 cpi.
6=UNIVAC 125 cpi.

PRINTED EQUIVALENTS FOR ALPHA-NUMERIC COMPUTER CODES

X-6 Mnemonic

Code

TST
TBL
TBT
TRW
TBU
TRD
TWR
TXM

T™MX

U 1774 .1

Computer
Code
ce
cé
C7
F2

™AL

Fb
G2
H2
C3
C1

Printed
Equivalents
)2
)6
)7
(2
(6
32
'2
)3
)

ADDRESSING

The X-6 Assembly System will generate absolute a, m,and ¢ ad-
dresses with optimal latency address development. In the as-
sembly of a program, however, it may be necessary to establish
certain relationships between data being assembled and data
that has already been assembled or that will be assembled. The
program 1s coded in small segments, termed "operations'", with
each of the operations coded by one or more programmers. To
assemble these operations, X-6 instructions must be coded in
such a way that the relation of each operation to any other is
taken into account. It may also be that certain routines such
as 90/80 HSR and RPU routines which already occupy fixed loca-
tions will be used with the program. Such routines must be
referenced in absolute notation only and the assembly system
must be restricted from assigning any of the fixed locations.

Various methods of addressing that relate lines and operations
or that restrict the generation of addresses may be used. In
a general sense, these methods come under the headings of In-
struction Addressing and Data Addressing.

I. INSTRUCTION ADDRESSING
A. ©Space Addressing

Space addressing relates two successive lines of coding.
It cannot relate one line of coding with another line
separated from it by any intervening coded lines.

When the a, m, or ¢ address of an X-6 instruction is
filled with spaces, these spaces will have one of
several meanings:

1. Following any instruction code that requires an m
and ¢ address, spaces in these portions will be in-
terpreted:

(PR wR W

Portion Meaning

¢ The next instruction to be executed is in
the next line of coding. Therefore, the
address generated for and assigned to this
¢ will be identical to the a address as-
signed to the next line.

m A computer operation is to be performed on
the word in the next line of coding; or,
the next instruction to be executed is in
the next line of coding. Therefore, this
m will be identical to the a address as-
signed to the next line.

10 U 17741

When an instruction code requires only an m or
only a ¢ address, the portion not used may be
filled with spaces or any other characters with-
out affecting the program.

When using space addressing, certain restrictions must
be oObserved:

1.

U 17741

Spaces cannot be used in both the m and c addresses
of an instruction unless the instruction requires
only an m or ¢ address. If spaces are used when
the instruction requires both an m and c¢ address,
the spaces in the m portion will be assumed to be
in error and an error code will appear when the

X-6 listing is printed out during assembly.

When an m or c¢ address necessary to the instruction
is space filled, the next line must contain spaces
in the a address. If the a address in such a case
does not contaln spaces, it will be processed cor-
rectly but the line with spaces in the m or ¢ ad-
dress will not. When the X-6 listing is printed
during assembly, an error code will be printed with
the line containing the a address to indicate that
the previous line must be recodzd.

Examples of Space Addressing:

a Op m c Remarks

AA553 IDA A4211 AAMAAA This ¢ and the next a ad-
dress will be the same.

AMAA TDX AL4216 AAMMAA This ¢ and the next
dress will be the s

AANAA CTM AAMMAA AAMA This m is ignoreds; this c
and the next a address will
be the same.

OAAAAA TDA AMAA A4211 This m and the next a ad-
dress will be the samej

AMAAL ALMA 00000 AOOOT the contents of the re xt
coded line will be loaded
in rA. The next instruc-
tion is in the coded line
with 4211 in the a address.

Ak211 STA alk215 AAAAA The contents of rA will be
stored in 4215, This ¢ and
the next a address will be
the same.

12

a Op m c Remarks

DAANAAN TMP ADAAA AAAAA This ¢ is ignored; this m
and the next a address will
be the same.

AAAAA TEQ AAMAA A4630 This m and the next a ad-
dress will be the same.
When the assembled program
is used, if the result of
the test is equality, the
next instruction will be
at the address generated
for the m addresss; if in-
equality, the next instruc-
tion will be at location
4630.

Tag Addressing

A tag is a symbolic address that relates one non-succes-
sive line of coding with another and may be either a
temporary or permanent tag. It may be used for an en-
trance to or an exit from common subroutines, to trans-
fer control to a common line at the end of a branching
chain of instructions, to transfer from one operation

to another, or to reference lines that may be modified.

A temporary tag refers only to lines within the same op-
eration in which it occurs. When a tag is referenced
by more than one operation (that is, when it is refer-
enced by lines within other operations than the one in
which it occurs) it is a permanent tag.

To conserve the memory space used during an X-6 assembly,
a table is kept of each type of tag. The tag identifier
and the address assigned to it are entered in the appro-
priate table. When an operation has been processed, the
temporary tag table is erased so that the temporary tags
of the next operation to be assembled may be stored in
those same table locations. The permanent tag table is
not egased (thus permitting communication between opera-
tions).

1. Permanent Tags

h.permanent tag is coded by using all five digits of
the X-6 symbolic address:

U 17741

U 1774.1

PPPP

Digits 12345

Symbolic Address PPPPm

(Digits 1-4) identifies a permanent tag and
may be composed of alphabetic and/or numeric
characters. Since identification depends on

the use of these digits (plus m), the first
digit cannot be A or O.

(Digit 5) specifies the memory area the
tagged line is to be assigned,or it may re-
fer to an overflow or c+1 condition (see
Overflow Addressing, below).

In either case, m must be one of the follow-
ing:

N for Normal Access memory assignment.
F for Fast Access memory assignment.
O or'P for overflow condition.

When assigning permanent tags, the following should
be observed:

a.

No more than 300 permanent tags can be used
in each progranm.

Permanent tags may be assigned to a specific
memory location by the use of a Tag Equals
Card, Card Type 3 (see Input Card Section,
below).

The identifier of the tag (digits 1-4) is
arbitrary. It is recommended that a meaning-
ful tag coding scheme be developed for each
program. This may be found useful after as-
sembling the X-6 Instruction Deck in checking

the X-6 listings.

An overflow line should be given a permanent
tag if the overflow subroutines referenced
are used by more than one operation.

Examples of Permanent Tag Coding:

Coding Remarks

LDA ASINF AAAAA Load rA with the line whose
a address is ASINF.

AMAAA ADD KO0O15 STINF The constant in KO0195 is

added to the contents of
ASINF. Control is sent to
the line whose a address
is STINF.

13

—he

Remarks

STINF STA ASINF A124F Restore ASINF; transfer to
line A124F,

Temporary Tags

A Temporary Tag is coded by using three of the five
digits of the X-6 symbolic address:

Digits 12345
Symbolic Address AAttm

tt (Digits 3-4) identifies a temporary tag and
may be composed of alphabetic and/or numeric
characters. Digit 2 may also be used as part
of the tag identifier; however, only digits
3-4 will be processed.

m (Digit 5) specifies the memory area the tagged
line is to be assigned, or it may refer to an
overflow condition (see Overflow Addressing,
below). In either case, m must be one of the
following:

N for Normal Access memory assignment.
F for Fast Access memory assignment.
O or P for overflow conditions.

~When assigning temporary tags, the following should
be observed:

a. Np more than 50 temporary tags can be used
in each operation.

b. It is not possible to assign absolute loca-
tions to temporary tags.

c. The identifier of the tag (digits 3-4) is ar-
bitrary. However, to make c¢ertain that no
more than 50 temporary tags are assigned in
any operation, it i1s recommended that such
tags be coded by numbers O1 through 50.

d. Temporary tags cannot be referenced within
any operation except the one in which they
occur.

Example of Temporary Tag Coding:

Coding Remarks
AATTN LDA WOOO5 AAAAA Page/Line counter to rA.
AAAAA LDL KOO12 AAAMA Constant: 00 0000 0030
AMMAA TEQ AAT2N AAABN Are they equal?
AAT2N CLA AAABN AAMAA\ Zeros into rA.

AAABN STA WOOO5 AAAIN Zeros into Page/line
counterj transfer to
the beginning of this

C. Overflow Addressing

Overflow, a c+l condition, can result from either an
arithmetic operation or an abnormal condition in an
input or output unit. In an arithmetic operation, it
is caused by the generation of a quantity beyond the
capacity of the register which is to receive it. 1In
an input or output unit, it may be due to any of a
nunber of mechanical conditions (HSP out of paper, RPU
card jam, for example). In either case, the instruc-
tion to be executed in the program is determined by
the addition of 1 to the c¢ portion of the instruction
in which the overflow condition occurred.

There are eight X-6 instruction codes that can result

in overflow conditions: ADD, SUB, DIV, RCC, HCC, PRN,
PFD, TBU. Whenever one of these codes is used, a sub-
routine should be coded that will handle the possible
overflow condition. In X-6 coding, this is accomplished
by the use of temporary or permanent tags with an 0 or

P In the fifth digit position. The tag with the 0 is

placed in the c¢ address of the instruction in which
overflow may occur. If there is no overflow, control
will be sent to the line with the 0 tag in the a ad-
dress portion. If overflow does occur, control will be
sent to the line with the P tag in the a address portion.

Thus, when the following instruction is assembled:

Coding Rema rks
Digits 12345 12345 12345

a Op m c
AAAAA DIV KA295 AA180 If overflow does not occur,
control is to go to tag
AA180.

If overflow does occur, con-
trol is to go to tag AA18P.

The address assigned to tag AA18P will be equal to the
address assigned to tag AA180 plus 1.

U 1774 .1 15

16

When coding for overflow conditions, it should be ob-
served:

1. Neither the O nor the P line has to follow the line
from which the overflow may result.

2. If the subroutine coded to handle the overflow con-
dition is common to more than one operation, a per-
manent tag must be used. If the subroutine is only
entered from one operation,a temporary tag may be
used. In either case, the tag must follow the cor-
rect format for its type (see Tag Addressing, above).

3. Overflow lines must be counted as part of the tag
limits.

The O and the P lines must each be counted once.

Coding Remarks
AAAAA LDA WO002 AAAAA Counter (original setting
99 9999 9975) to raA.
AAAAA ADD KO109 AAL20 Update counter; if overflow,

go to a address 42P; if no
overflow, go to a address
420.

AAT9N LDA KOOO6 AA20N
AA20N STA AAAZN AAABN

AA420 STA WO002 AAT9N No overflow, store updated
counter in WO002; go to a
address AA1T9N.

ANY2P LDA K0212 AAAAA Reset counter (99 9999 9975
to rh).
AAAAA STA WO002 AA22N Store reset counter in W0002%

go to a address AA22N.
Absolute Addressing

When it is necessary in an operation to reference a
fixed computer location or absolute address, it is
coded by placing the specific numeric characters that
designate that location in the X-6 symbolic address,
digit positions 2-5. To refer to Fast Access memory
location 4318, for example, the numbers 4318 would be
placed in digit positions 2-5 of the appropriate X-6
symbolic address. Digit position 1 may be coded as a A
or O. Thus, digit positions 2-5 when used for absolute

U 17741

addressing must be in the range AAAO (or 0000) through

44999, 1

An address coded in this manner will not be modified
in any way. For example, if RPUOL-8CO1 is to be used
with an X-6 coded program and it is necessary to enter

the RPUOY4 Punch Section.

The X-6 coded line that

transfers control that section will contain the ab-
solute address of the Punch Section entrance:

Coding

a Op m c
12345 12345 12345
AAMAA IDA AAATN A3072

Remarks

Bring the contents of tagged
line 1N to rA, and go to lo-
cation 3072 for the next in-
struction to be executed.
(3072 is the entrance to the
Punch Section of RPUO4-8CO1.
Control will be returned to
the X-6 assembled program at
the line placed in rA.) The
¢ address could also have
been coded as 03072.

References to absolute addresses may be placed in the a,
m, and ¢ portions of an X-6 instruction.

To determine whether an address is absolute or not,
during an X-6 assembly, a test is made to determine if
the character in digit position 5 is alphabetic. If

it is not, digit position 1 is checked. If this char-
acter 1s also not an alphabetic, the address 1s classed
as an absolute address and is not modified in any way.
If absolute addressing is to be used in a program, the
specific locations must be restricted from assignment
during the X-6 program assembly. This is done by
specifying such locations, or even specific groups of
locations (portions of the computer memory) on Restrict
Cards, Card Type 2 (see Input Card Section, below).

E. Register Addressing

When it is necessary in an operation to address the con-
tents of a register, the address is coded by using two
of the five digits of the X-6 symbolic address:

'If the absolute address 0000 is to be assigned, it should be
noted that at least one digit must be a zero. The other digits

positions may be coded as spaces.

U 17741

17

IT.

18

Digit 12345
Symbolic Address AANAR 1

R should be placed in digit position 4 though only
digit 5 is processed.

i (Digit 5) must be:
A for register A.

X for register X.
L for register L.

The register contents should be added to the symbolic
deck by use of a card with the register in the a ad-
dress portion. This will allow the latency counter or
Clock to be updated for correct address assignment of
the next line to be assembled. For example:

Instruction Line
a Op m C Remarks

AAMAA TDA KOOO5 AAAAA Contains JMP ASINF

AANAA ADD KOO12 AAARA Add 00 0000 0010 to the con-
tents of rA and go to rA for
the next instruction. The next
Instruction is in line ASINF.

AAANRA JMP ASINF AAATO
The card with rA in the a address portion will cause a

print out on the listing. No corresponding output card
will be produced.

DATA ADDRESSING
X-6 coding provides four basic types of data addressing:

Working Storage
Constants

Table Entry
Interlace

Working Storage and Constant addressing refer to data (or
instructions treated as data). These are stored in loca-
tions related to the lines of the operations in which
they are referenced but not to themselves. Table Entry
and Interlace Addressing reference data stored in loca-
tions relative to themselves, the relation to their pro-
gram references being of secondary importance.

U 1774.1

A. Working Storage and Constant Addressing

Both constant and working storage data may be coded with
spaces in the a symbolic addresses each time they are
required by the program. Such coding would assure the
best possible latency positions being assigned during an
X-6 assembly. However, the data would have to be placed
in a specific location for each reference and could not
be referenced by any line of coding other than the line
directly preceding it. When time alone i1s the prime
consideration, this method can be used to advantage. The
disadvantage, of course, i1s that more than one location
is occupied by the same data word.

To conserve memory and assure at least minimal relative
latency between a working storage or constant location
and the lines of the operations that reference it, such
data are assigned to pools. Working Storage data would
be placed in the W-Storage pool and constant data in
the K-Constant pool. When assigned to a pool, the ad-
dresses generated for a W-Storage or K-Constant by the
X-6 Assembly System will depend upon the address as-
signed to the line in which it 1s first referenced.
During the subsequent assembly process, the same ad-
dress will be assigned whenever a particular W-Storage
or K-Constant occurs.

To assure minimal relative latency to all the lines in
which they are referenced, W-Storages and K-Constants
willl be assigned by the X-6 assembly system to the Fast
Access memory until all such locations are exhausted.
After that, they will be assigned to the normal access
bands.

The most appropriate method of addressing W-Storages or
K-Constants will depend upon the program to be assembled.
Final determination will be made by considerations of
program memory space and running time. Whatever the
method, the decision must be made before the program is
coded. For example, if the program flowchart indicates
that the coding will take about a thousand lines, and
computer running time is critical, space addressing
would be the most logical method of coding. If the
flowchart indicates that storage space may be critical,
working storages and constants would be pooled, or a
portion pooled (those most often referenced by various
operations) and others space coded.

When data 1s placed in a pool, consideration should be
given to when the first reference is to be made to it
during the X-6 Assembly. For example, if an operation
is to be executed repeatedly for each input item in a

U 174,71 19

program, and working storage and/or constant data used
in that operation is also referenced by othar opera-
tions, the first references to the W-Storage and K-Con-
stant data during the X-6 assembly should be pade in the
repeated operation. Thus, minimumn latency would be ob-
tainsed for the references in the repeated operation and
minimal relative latency would be obtained for refer-
ences 1n other operations by Fast Access memory assign-
ment of the W-Storage and K-Constant data.

A maximum of 300 W-storages and 300 K-Constants are
allowed in a program. Both W-Storage and K—Constanp
entries are addressed in X-6 coding by tags conforming
to a particular format.

W-Storage and K-Constant Addressing

The W-Storage or K-Constant tag will most often occur

in the m symbolic address portion of an X-6 instruc-
tion. When the contents of the W-Storage or K-Constant
is given, the tag will occur in the a portion. If the
contents should be an instruction to be performed, refer-
ence may be made in a c¢ portion.

Coding
Digits 12345
Symbolic Address yOxxx

y (Digit 1) BEither W or K must be used in this lo-
cation.

W=W-Storage po

K=K-Constant p

ol.
0ol.
O (Digit 2) This position is ignored during X-6

Assembly. It is usually coded with A or O but
may be any character.

xxx (Digits 3-5) These must be a numeric in the
range 000 tc 299. Leading zeros may be coded as
spaces (KAAAT=KAOO1). During X-6 assembly, these
digits are extracted and used to form a table
look up instruction when W and K tags are conver-
ted to absolute addresses.

When coding W-Storage or K-Constant addresses, the
following should be observed:

a. The order of addressing is not important. For
example, A299 may be referenced before A050.

b. All 300 numbers for each type of tag do not
have to be used in a program.

20 U 17741

c. An gbsolute address may be assigned to W-Storage
or K-Constants by using a Tag Equals Card, Card

Type 3 (see Input Card Section, below).

2. When the X-6 Symbolic deck is keypunched from the X-6
coding, for every W-Storage or K-Constant referenced
in m or ¢ addresses, there must be a card containing
the W-Storage or K-Constant in the a address. For ex-
ample, if in the coding there are m and/or c address
references to WAOOO through WAOO3 and KAO15 through
KAO17, the following cards must be part of the sym-
bolic deck:

a Op m ¢

WAOOO
WAOO1
WAOO2
WAOO3 CONTENTS
KAO15
KAO16
KAO17,

The contents of the constant addressed by the K-Constant
tag will appear in the Op, m, and c address positions of
the card. When W-Storage locations must be set to ini-
tial conditions, as with counters or limits, these ini-
tial conditions will be keypunched in the same manner as
K-Constant contents. Whether the contents are for K-
Constants or for W-Storages, they may be coded to be
treated as absolutes, not to be modified in any way, or
coded symbolically to be translated during the X-6 as-
sembly.

3. If absolute coding is used, AAA must be placed in the

Op portion. The ten digits that are placed in the m

and ¢ porticons may be alphabetlic, numeric, or any combi-
nation of the two. For example, the contents of the
following would be treated as absolute:

a Op m c

WAO74 AAA 99999 99975
KA284 AAA 00000 00000

In the case of data not to be translated into machine
code, a Key of the card would also be punched. If, for
example, the following K-Constants were to bes used for
punching and/or printing, the Key would be punched:

T 1774 ,1 21

22

a Key Op m c

KA025 U AAA RUNO1 EDIT 2 part alphabetic, USS
90 Card code.
(U=Unprimed)

KAQ26 P AN RUNO1 EDIT (P=Primed)
KAO1S U AAA RUNO1 EDIT 3 part alphabetic, USS
80 Card code.
KAD16 P AN RUNO1 EDITA (U=Unprimed)
(P=Primed)
KAO17 D AAA RUNO! EDITA (D=Duoprimed)
KAO50 N AAA RUNO1 EDITA 2 part alphabetic, USS

80/90 machine code.
(N=Numeric)
KA051 Z AAA RUNO1 EDITA (Z=Zone)

When X-6 symbolic coding is used, translation of the W-
Storage or K-Constant data will be made during the X-6
assembly. The thirteen digit positions comprising the
Op, my ¢ address portions must be used. For example,
the contents of the following would be translated during

assembly: a Op o c

KAOO8 LDA KAOO4 ASINF

The processing of W-Storage and K-Constant data is de-
termine by the presence or absence of spaces (AAA) in
the Op portion of the coding.

Ther
Tn

e
hab

ey (%]

are slx n
etic des

n-
n

o
4

on-numeric computer coded characters. The
gnatiocns for thess sre

ete

-
3
-

TDoHQW =

A A or a 2 in the control column will indicate a positive
or negative value (see INPUT CARD FORMAT, Card Type 8).

During the assembly of the symbolic deck, it is advanta-
geous to group the cards containing W-Storage data to-
gether under the same operation name and the cards con-
taining K-Constant data under another operation name
(usually, WWW and KKK are the operation names used). By
using such an assembly, desk checking and program test-
ing of an X-6 assembled program is simplified: When it
is necessary to check the contents of a referenced w-
Storage or K-Constant, it 1s easier to find if the loca-
tion in the deck is a known relative position.

U 1774.1

2

Table Entry Addressing

A table consists of data stored at regularly spaced in-
tervals. The contents of any particular storage loca-
tion in a table may be designated as an entry. Provi-
sion has been made in the X-6 Assembly System for as
many as thirty tables of up to 1,000 words each in a
program. A table entry reference will usually occur in
the m symbolic address portion but may occur in the a
or ¢ portion. It is coded in the following manner:

Coding _
Digit 12345
Symbolic Address tnxxx

tn (Digits 1-2) is the identifier of the table refer-
enced: t (Digit 1) must be either S, U, or V. Thus
allowing 30 possible table names.

n (Digit 2) must be a numeric in the range
0 through 9.

xxx (Digits 3-5) is the identifier of the table entry
and must be a numeric in the range 000 through

999.

Thus, S3000 would reference the first entry of table
s3, %4898 would reference the 899th entry of table vk,

The order in which tables are referenced is not
important (the first table might be V8, the second S1,
the third U9, etc.).

When the number of tables that will be used in a program
has been determined, each table must be described on a
Type 5 Card (see Input Card Section, below). The coding
on the Type 5 Card will define the location of the first
table entry, the number of entries (000-999) in the
table, and the desired interval between entries. When
this card is processed by the X-6 Assembly System, all
locations required by the table will be restricted from
other assignment.

Care must be taken during the X-6 coding of a program
not to reference an entry that 1s not in a particular
table. That 1s, if the number of entries in a partic-
ular table was defined as 25 on the Type 5 Card, only
25 locations were restricted to that table. Should a
reference be made to an entry greater than 25 for that
table, it will not be detected as a logical error
during the X-6 assembly.

U 1774 .1 23

2.

2k

Interlace Addressing

Positions on the Input and Output Interlaces may be re-
ferenced as absolute addresses or in X-6 symbolic coding.
When referenced symbolically, the coding, which may ap-
pear in the a, m, and ¢ symbolic addresses, is:
Coding
Digits 12345

Symbolic address inxyz

in (Digits 1-2) is the identifier of the interlace.

i (Digit 1) specifies the I/0 device and must be one
of the following:

H the read interlace of the HSR.
the read interlace of the RPU.
the punch interlace of the RPU.
the HSP interlace.

tape interlace.

N YO W

n (Digit 2) specifies the number of the interlace and
must be a numeric in the range O through 9.

Thus, the combination of the alphabetic specifying and
I/0 device and the numeric of O through 9 allows ten
possible identifiers for each I/0 device. Since two
alphabetics may be used to specify a tapeinterlacc, 20
tape interlace identifiers are possible. A program re-
quiring the use of alternate input bands could be coded
throughout with symbolic addresses. Alternate Cards,
Type 4 (see Input Card Section, below) would be used to
redefine each band.

xyz (Digits 3-5) depends upon the action desired by the
reference.

To refer to an entire hand:

a. xy (Digits 3-4) must be 00 when reference is
made to an entire band of the HSR or RPU.

z (Digit 5) must be O if the contents of the
band are not to be automatically trans-
lateds; 1 if the contents of the band are to
be automatically translated.

(For example, HBU H1000 would dump the HSR buffer
into the first and second read interlace posi-
tions without automatic translation. For auto-
matic translation, the instruction HBU H1001
would be used.)

U 1774 .1

b. When g reference is made to a complete HSP in-
terlace band:

x (Digit 3) must be O.

yz (Digits 4-5) will specify a number of lines
and must be a numeric in the range 00
through 79.

(Thus, PRN POOOO would advance the paper zero
lines before printing.
PRN POO30 would advance the paper thirty lines
before printing.)

c., When an entire tape interlace i1s referenced, as
in read and write instructions:

x (Digit 3) refers to the Uniservo number and
must be a numeric in the range 0-9,.

y (Digit 4) refers to mode and density and must
be:

0 for USS, 250 cpi.
5 for UNIVAC, 250 cpi.
6 for UNIVAC, 125 cpi (used only with write
instructions).
z (Digit 5), used only with read instructions,
refers to direction and gain and must be:
O forward normal.
forward low.
forward high.

backward normal.

oN oo —

backward low.
7 backward high.
When reference is to be made to a particular word
of an interlace band, the above coding cannot be
used.
3. To refer to a particular word of an interlace band:

a.x (Digit 3) relates to the translation mode and must
be one of the following:

(1) For untranslated (Card Code) words of a
band:
U=Unprimed.
P=Primed.
D=Duoprimed (applicable USS 80 only.)

U 1774 .1 25

26

(2) For the HSP Interlace and for translated
(Machine Code) words:
N=Numeric
Z=zone.

b. yz (Digits 4-5) relate to the word in the interlace

band. The coding varies for each I/0 device:

(1) HSR and RPU Read Stations:

y (Digit 4) means the read station and must be
or 2.

z (Digit 5) means one of the eight words and
must be a numeric in the range O through 7.
Thus, N11 specifies the numeric portion of the
second word at the first read station.

Z20 would specify the zone portion of the
first word at the second read station.

U25 would specify the unprimed portion of
the sixth word at the second read
station.

(2) RPU Punch Interlace:
y (Digit 4) must be 1.
z (Digit 5) indicates the word and must be a
numeric in the range of 0 through 7.
Thus, U13 specifies the unprimed portion of the
fourth word of the punch interlace.

Z10 would specify the zone portion of the

first word of the punch interlace.
(3) HSP Interlace:
yz (Digits 4-5) must be a numeric in the range
01 through 13.

Thus, N12 would specify the numeric portion of
the twelfth word of the HSP interlace.
(4) Tape Interlace:
x =Nor Z

yz (Digits 4-5) when referring to a word of
a tape interlace must be a numeric:

in the range 00-71 of an interlace in XS-3
Code,

in the range 00-99 of an interlace in USS
Code.

U 1774 .1

4. As examples of interlace addressing from the fore-

U 1774 .1

going:

H1Z10 HSR interlace #1, the zone portion of word

PIN13

zero at the first read station. H1Z20 would
be the same word at the second read station.

Printer interlace #1, numeric portion of word
13. P1Z13 would be the same word, zone por-
tion.

The ninth tape infterlace, zone portion of word
11. (TRDAA8OO would be, read one block from

tape buffer band using Servo 8, USS mode, for-
ward normal).

27

LATENCY MINIMIZATION

Latency minimization during a program or an operation assembly
is achieved through use of a working storage location called a
"Clock" in which the X-6 Assembly System stores the relative
band level location. The value or setting of the clock is ini-
tially 00 0000 0000. At any subsequent time, the setting will
always lie within the range 00 0000 0000 through 00 0000 0199,
When an instruction line is analyzed by the X-6 Assembly System,
the clock reading is used to obtain the tentative best address
(TBA) for the next address to be assigned. The TBA is gener-
ated and assigned by using the value of the clock setting, in-
crementing the setting by the specific word increments associ-
ated with each instruction code, or by assigning a new setting
to the clock and then incrementing the value of the new setting
(these increments can be found in the Instruction Code Informa-
tion Words Table, below). After the TBA is obtained, the avail-
able memory locations are searched. If a band location equiva-
lent to the relative band level of the TBA is found, it is as-
signed. 1If no such band location is found, the TBA is incre-
mented and another search is made. This process continues un-
til an assignment is possible. When it is not possible to make
an assignment because the memory is full, an arbitrary assign-
ment to 9999 is made and the assembly continues. A printout
indicating such an assignment is made in the listing. After an
address assignment has been made, the absolute address is re-
duced to a relative band level value and is stored in the Clock.

28 U 17741

INSTRUCTION CODE INFORMATION WORDS TABLE

If control column indicates Index Register modification, add one
more word time before m.

Digit 3 Digits Digits

Digits Action 5-7 8-10
1-2 Code Before m Before c

ADD 70 0 002 003
BUF 20 0 002 002
DIV 55 0 002 113
ERS 35 0 002 002
LDA 25 0 002 002
ILDL 30 0 002 002
LDX 05 0 002 002
MUL 85 0 002 103
STA 60 0 002 002
STL 50 0 002 002
STX 65 o) 002 002
SUB 75 0 002 003
LIR 02 0 000 003
IIR 07 0 000 o0k
TRD G2 1 000 017
TWR H2 1 000 017
TRW F2 1 000 150
TMX c1 1 000 003
TXM C3 1 000 003
ATL 77 1 000 003
CTM 12 1 000 003
MTC 17 1 000 003
ZUP 62 1 000 004
HSS iy 1 000 003
RSS 57 1 000 003
CLA 26 2 003 000
CLL 31 2 003 000
CLX 06 2 003 000
JMP 00 2 002 000
CAA 36 2 003 000
CAX 86 2 o1k 000
C 2

TA 3 2 (88? 000
PFD 16 3 22 003 222 is a code not affect-
SHL 37 3 111 003 ting timing; 111 means use
SHR 32 3 111 003 amount of shift.

U 1774 .1 29

Digit 3 Digits Digits

Digits Action 5-7 8-10
1-2 Code Before m Before c

HBU 96 L 198 203
PRN 11 L 197 592
RBU L6 L 098 203
RCC 81 4 098 203
TBU 76 L o048 103
TBL Ccé6 4 198 205
HBT Lo 5 ook 003
HCC 72 5 (o]o)1 003
PBT 27 5 ooy 003
RBT 22 5 o0o4 003
STP 67 5 003 003
TEQ 82 5 003 003
TGR 87 5 003 003
TBT Cv7 5 005 003
TST c2 5 0oL 003

30 U 1774 .1

CLOCK MODIFICATION

The purpose of the clock modification instructions is to allow
relationships to be established between addresses when these
relationships cannot be detected by the X-6 Assembly System.
This is necessary because the X-6 Assembly System is a one

pass program.

Once an address has been assigned, therefore,

it cannot be changed at any subsequent assembly point. Cer-
tain conditions may arise when the process by which the X-6
system assigns addresses will not result in the best latency

from an overall program point of view.

would be:
X-6 Coded Lines

a Op m c
ANAAA TEQ AAATN AAAAA

AANAA TGR AAATN AAAAA

X-6 Assembled Coding

o145 82 2148 2348
2348 87 2148 2351

One example of this
Remarks

The address for temporary tag 1N
would be assigned during the assem-
bly of the TEQ line. This address
would then be placed in the TGR
line.

Thus, if control is sent to 2348
by the equality test and then sent
to 2148 by the magnitude test, a
drum revolution would be lost.

In this case, it would be desirable to have the address assigned
to 1N increased by the increment between the first reference to
it in the TEQ line and the second reference to it in the TGR
line so that the coding generated would be:

X-6 Assembled Coding

2145 82 2151 2348
2348 87 2151 2351

Remarks

The process by which this is accom-
plished will be found in the Examples

of Clock Modification at the end of
this section.

The clock setting may be modified by any arbitrary increment, or
the clock may be set to any arbitrary band relative reading. Such
modification is programmed by the use of any of seven clock modi-
fication instructions. Each such instruction used is keypunched
on a detail Card, Card Type 8 (see Input Card Section, below),
and filed in the symbolic deck immediately preceding the instruc-
tion the new clock reading is to affect.! Each of the seven

1Clock modification cards do not require a card number in columns

6-8. Thus, they may be inserted at any time without breaking the
detail card sequence and causing an entire operation to be renum-
bered.

U 17741 3

clock modification instructions must have CLOCK in the a sym-
bolic address portion of the coding.

The clock modifications may be divided into two basic types:

SE (Set) in which a new setting of the Clock is made before in-
crementation by a specified number of word times. An SE in-
struction may only directly modify one address in the suceed-
ing instruction.

AD (Add) in which a specified increment is added to the normal
band relative address which the X-6 Assembly System would
normally assign. An AD instruction may directly modify two
addresses in the succeeding instruction.

The clock modifications and theilr format are as follows:

A. AAMA Instruction:
a Op o o Remarks

CLOCK AAA sssss 00xxx The succeeding a address will be
modified:

sssss must be a legitimate X-6
symbolic address or an ab-
solute memory location.
This address will be con-
verted to a band relative
reading and placed in the
clock.=?

xxx must be a numeric Iincre-

mant tn he addsAd +tn +hna
Mivoia v us~s (VAW N YA A Vil

new clock setting in addi-
tion to the normal incre-
mentation. The result of
this addition will be the
TBA for the assignment of
the succeeding a address.®

®If sssss is an X-6 symbolic address that has not already been
processed, it will be assigned a permanent address when the
clock modification instruction line is processed. Thus, it
would be assigned in minimal latency to the line just preced-
ing the clock modification in the assembly process. If this
happens, it could result in a loss of word times when the ob-
Ject program instruction line that first references sssss is
assembled.

3The word time increment of the clock modification instructions
is always added to the clock setting. Since the clock setting
will always lie within the range 000-199, the setting may, in
effect, be decremented by subtracting the desired decrement
from 200 and using the result as the specified increment.

32 U 1774 .1

This 1s the only clock modification that does not contain sa
mnemonic code in the Op portion of the instruction. The
same modification may be accomplished by use of the SEA in-
struction (see below). It is also the only clock moiifica-
tion instruction that does not allow the clock to be reset
to 1ts premodification setting after the succeeding desired
address portion has been assigned according to the modified
clock setting.

B. SE Instructions:

For each of the succeeding SE instructions, the format of
the a, m, and ¢ address is the same:

1. The a address portion must always be:

a
CLOCK

2. The m address must always contain:

m

xxx02z xxxX = The numeric increment to be
added to the new clock read-
ing that will be specified
in the c¢ portion of this in-
struction in addition to the
normal incrementation. The
new clock reading plus the
increment will result in the
TBA for the address to be as-
signed, (Spaces, A, cannot be
used in place of zeros.)

z = 0 if the clock setting is
not to be restored to its
premodification setting be-
fore obtaining the TBA for
the address succeeding the

address to be modified.

z =1 if the clock setting is
to be reset to the premodi-
fication setting before ob-
taining the TBA for the ad-
dress succeeding the address
specified to be modified.

3. The c¢ address must contain:
c
sssss sssss = A legitimate X-6 symbolic
address or an absolute memo-
ry location. This address
will be converted to a machine
coded band relative reading
and placed in the clock.

U 1774 .1 33

4. The mnemonic SE instructions and their format are:

CLOCK SEA xxx0z sssss The succeeding a address TBA
will be arrived at by using the
band relative equivalent of
sssss plus the increment xxX.
The presence of 0 or 1 in the z
digit position will determine
whether the clock will be re-
stored to 1ts original setting
when this modification has been
accomplished or if the clock
setting that results from this
modification will be retained.

CLOCK SEM xxx0z sssss The succeeding m address TBA
will be arrived at by the above
process.

CLOCK SEC xxx0z sssss The succeeding c address TBA
will be arrived at by the above
process.

Ce AD Instructions:
1. The a address portion must always be:

a
CLOCK

2. The m and c address portions must always contain:

m c
xxx0 OOyyy yyy

The numeric increment to be

annt ~A~TAnlr
added to the present clock

reading, in addition to the
normal incrementation, to
arrive at the TBA to be as-
signed to the next address
specified in the operation
code of the AD instruction.

:

The numeric increment to be
added to the clock reading
according to the numeral in
the z digit. This addition
is used to obtain the TBA for
the address to be assigned
after the address called for
in the operation code of the
AD instruction. If xxx=000,
the address generated will
be derived normally from the
clock reading determined by
the z digit.

(Space, A, cannot be used in place of zeros in the xxx and yyy
portions.s

34 U 1774 .1

N
I}

O if the clock setting is not
to be restored to its pre yyy
reading before incrementing
by xxX.

z = 1 If the clock setting is to
be restored to its pre yyy mo-
dification before incrementing
by XXX.

3, The AD instructi

CLOCK ADA xxx0z OOyyy The TBA for the succeeding a
address will be arrived at by
adding yyy to the clock read-
ing. The succeeding m address
will be arrived at by incre-
menting the new clock reading,
if z=03 or, if z=1, by restor-
ing the pre yyy incrementation
clock reading before incremen-
ting by xxx. The succeeding a
address will be assigned
normally.

n Codes, and their format, are:

CLOCK ADM xxx0z OOyyy The succeeding m and c¢ addresses
will be arrived at by the above
process.

CLOCK ADC xxx0z OOyyy The succeeding a and m addresses
will be assigned normally. The
succeeding ¢ and the a address
following it will be arrived at
by the above process.

L4, When an absolute address on the Fast Access bands is
specified in a clock modification instruction, the Fast
Access address is reduced to a number in the range 00
through 49. This is placed in the clock in the form
000 through O49. Thus, if no further incrementation is
§pecified, the absolute address derived from this read-
ing will have to be on an even band level on the Normal
Access bands. An odd numbered band assignment on the
Normal Access bands is only possible when the clock set-
ing, plus increment if called for, is in the range 100
through 199.

D. Ixamples of Clock Modification

The following examples of the use of the clock modification
instruction are not intended to illustrate every possible
condition that may arise. The application of these instruc-
tions will depend entirely on the nature of the object pro-
gram to be assembled.

U 1774 .1
35

1. 1In the beginning of this section, the following example
was given:

X-6 Symbolic Coding X-6 Assembled Coding
a Op m c a Op m c
TEQ 1N 2145 82 2148 2348
TGR 1N 2348 87 2148 2351

It was noted that the address of temporary tag 1N was
generated and assigned during the processing of the TEQ
line. Thus, the same address was assigned when 1N was
referenced in the TGR line. The result was that if
during the object program execution control was sent to
2348 after the equality test and then to 2148 after the
magnitude test a drum revolution would be lost. In
such a case, a clock modification instruction should be
used so that the address generated for tag 1N will be
incremented by the word time interval between its first
reference in the TEQ line and its second reference in
the TGR line:

X-6 Symbolic Coding X-6 Assembled Coding
a Op m c a Op m ¢
CLOCK ADM 00001 00003
TEQ 1N 2145 82 2151 2148
TGR 1N 2148 87 2151 2351

Thus, the address generated for 1N in the TEQ line would
be incremented by 3 word times before assignment. The
clock reading existing before the 1N address assignment
would be used to obtain the ¢ address in the TEQ line.

2. The X-6 Assembly Systenm automatically increments the
clock by 105 word times for every multiplication instruc-
tion: 2 word times between the a and m addresses and 103
between the m and c addresses. In those cases where the
number of digits in the multiplier is known, this incre-
ment can be changed by use of a clock modification and
insertion of a sentinel to the left of the most signifi-
cant digit of the multiplier:*

“When the computer receives a multiplication order, the multiplier
is placed in rX and a sentinel is automatically generated and
placed in the least significant digit position of rA. As the
multiplication process is carried out, this machine sentinel
is shifted one position at a time toward the least significant
digit position of rX, followed by the least significant digits of
the product as they are developed. When the machine sentinel is
shifted out of the least significant digit position of rX, the
multiplication process stops. The product of the multiplication
is in rA and rX with the least significant digits in rX. When a
programmed sentinel is placed in rX with the multiplier, the
machine sentinel is still placed in rA. When the programmed sen-
tinel is shifted out of rX, the multiplication process stops. The
machine sentinel is left in rX to the right of the least signifi-
cant digits of the product.

36 U 1774.1

X-6 Symbolic Coding

a Cp m c Remarks
LDL Woo12
CLOCK ADM 03000 00000 It is assumed that the sentinel
MUL X0001 has been positioned in the mul-

tiplier contained in KOOO1 and
that thirty word times, plus
the 2 word times between the a
and m addresses, has been de-
termined as the length of time
needed for the multiplication
to be completed.

Thus, the clock would be incremented by 000 before as-
signment of the address for KOOO1. The ¢ address follow-
ing would be generated and assigned with an incrementa-
tion of 30 word times instead of the usual 103.

3. An object program may contain a constant that is a vari-
able instruction. This could be, AAAAA SHR AOOOO AAA7N
with the amount of shift ranging from 0000 to 0009.

When assembling a shift instruction line, the X-6 Assem-
bly System increments by the amount of shift specified
by the m address plus three word times to obtain the c
address. If the above line were assembled with the
minimum shift value, the ¢ address would be assigned
three word times from the a address. As the instruc-
tion was executed during the object program, any incre-
mentation of the shift value would result in the loss

of a drum revolution. This can be corrected by the use
of a clock modification instruction during assembly:

X-6 Symbolic Coding

a Op m c Remarks
LDA 6N Load rA with constant.
CLOCK ADC 00000 00009 Adjust ¢ address of constant
for maximum shift value.
SHR 00000 7N Constant.
6N BUF W 3 RA Buff in amount of shift (al-
ready generated and stored in
W-Storage 3) and go to rA for
next instruction.

It is assumed that the constant line in this case is
only referenced in this operatien and only at this
point in the operation. Thus, it is net necessary to
assign a K-Constant tag to it.

4, The principle used in example 3, above, can apply to any
variable instruction line of a program to be assembled.
For another example of this, an instruction line is to
be modified by an index register before execution:

U 1774 .1 37

38

X-6 Symbolic Coding
a Op m ¢ IR Remarks

4oN STA A1000 ASINN 2 For this example, assume the
range for m to be 1000 through
1150 due to index register mo-
dification before execution.

Thus, the address to be assigned to ASINN should be re-
lative to 1150 rather than 1000 which is the first exe-
cutable value. To do this, the line could be preceded
by:

CLOCK ADM 00000 00150 The address generated for the
4ON STA A1000 ASINN 2 m portion will be incremented
by 150 (the upper limit of
its range) before assignment.
The ¢ address will be derived
normally from the resultant
clock setting.

When an object program contains a subroutine which con-
sists of operations of various word time lengthsbut with
the same exit, it 1s usual practice to assemble the
longest of these operations first. If this is not done,
the first operation to be assembled should have its exit
line preceded by a clock modification instruction which
will increment the common exit address by the word time
differential between the length of the operation being
assembled and the length of the longest operation in
the subroutine. For example, a subroutine contains the
following three operations:
a. Enter with tag 1N, process data (approximately 50
word times), and exit to tag ASINF.

b. Enter with tag 2N, process data (approximately 100
word times), and exit to tag ASINF.

c. Enter with tag 3N, process data (approximately 200
word times), and exit to tag ASINF.

If operation a. is assembled first the exit line to tag
ASINF would be preceded by:

X-6 Symbolic Coding
a Op m C

CLOCK ADC 00000 00150 The address generated for tag
STA W 19 ASINF ASINF would be incremenced by
150 word times, the difference
between the length of the op-
eration assembled and the length
of the longest operation of the
subroutine,

U 17741

The same principle as in example 5 would be applied if
the length of an operation is variable. For example,
if the entrance to an operation were to be made from
instructions entered in a table, the overall operation
length set during assembly should allow for the
longest possible length of the operation:

Given a table of five entries stored at intervals of
twenty word times between each entry, the word time
difference betweeen the first and the fifth entry
would be 80.

Assigned X-6 Coded
X-6 Coding Location Contents
S1000 2300 LDA WOOO1 ASINF
S1001 2320 LDA WOO02 ASINF
51002 2340 LDA WOOO3 ASINF
S1003 2360 LDA WOOO4 ASINF
S1004 2380 LDA WOOO5 ASINF

If the first assembled line is to be S1000 LDA WOOO1
ASINF, and this is the first assembly reference to
ASINF, a clock modification instruction should be used
to set the address assigned to ASINF so that when the
last table entry line is assembled, minimal latency
between addresses will result:

CLOCK ADC 00000 00080
S1000 LDA WOOO1 ASINF

In this way, the address generated for ASINF would be
incremented by 80 word times before assignment. When,
later in the assembly, S1004 LDA WOOO5 ASINF is as-

. D7
sembled, the addresses would be in minimal latency.

The amount of incrementation would depend on which
table entry line is first assembled.

When a connector is to be set in an object program, it
may be desirable to use a clock modification to relate
the m address of the instruction to be placed in the
connector with the address assigned to the connector.
For example, the instruction lines that load the con-
nector are:

X-6 Symbolic Coding

Remarks
a Op m c
LDA 5N Load rA with connector set-
ting.
LDA 7N ON The connector setting.
5N STA ABC2N Store setting in connector.

U 1774 .1 39

Lo

The clock modification used could be:

X-6 Symbolic Coding
a Op m c

LDA 5N
CLOCK SEM 00200 ABC2N
LDA 7N ON

5N STA ABC2N

Remarks

The address assigned to 7N will
be equal to the band relative
address assigned to ABC2N plus
an increment of 2 word times.

It is assumed, in this example that ABC2N has already
been assigned an address during a previous portion of
the assembly. If it has not and the ABC2N address is
assigned during the assembly of the above lines, it may
be necessary to use a clock modification during the as-
sembly of the operation in which ABC2N is executed. This
would insure minimal latency of the address generated
for that operation in relation to the ABC2N address.

U 1774 .1

X-6 LIBRARY ROUTINES

Certain functions recur frequently as elements of an installa-
tion's programs. Such function are typically isolated and coded
in the best possible manner for inclusion in an X-6 Library.

When an object program 1s to be assembled by the X-6 Assembly
System, any X-6 library subroutine decks necessary are included
with the main program deck. This allows the assembly system to
generate the absolute addresses occupied by the subroutines.

When a subroutine is coded for inclusion in an X-6 library, in-
put and output locations are characteristically assigned to re-
gisters in order to simplify access to the subroutine by the
user. Provision is made, wherever possible, for the insertion
of parameters which can tallor the subroutine to the needs of
any object program. References to constants, working storages,
interlaces, and tables which are used by such a subroutine but
not contained within it are generalized by placing special tags
to indicate parameters in the a, m, or ¢ address portions where
these references occur.

Twenty tags to indicate parameters are allowed in each operation
within an X-6 library subroutine. The coding of this tag is in
the form:

Digit 12345

Symbolic Address XAAnn

X (Digit 1) must be X.
(Digits 2-3) may be AA or 00.
nn (Digits 4-5) must be a numeric in the range Al (or
01) through 20.

(Note: Should it ever happen that more than 20 parameters are
necessary within a subroutine, all parameters beyond the XAA20
upper limit would be coded as permanent tags.)

When the X-6 library subroutine is assembled as part of an ob-
ject program by the X-6 Assembly System, the parameters addressed
within each operation of the subroutine are assigned specific
locations related to the object program, by the insertion of
Specifications Cards, Card Type 6 (see Input Card Format, below),
before the operation to which they apply. The format of the
entries on the Specification Card is:

Digits 12345678910
Symbolic Coding X AAnneeceee

XAMAnn (Digits 1-5)is the parameter to be redefined in re-
lation to the program being assembled.

U 1774 .1 b1

eecee (Digits 6-10) is a legitimate X-6 address to be
placed in the parameter designated
by digits 1-5. This may be an ab-
solute address or an X-6 Symbolic
Address (that is, a permanent tag,
an interlace or table reference, a
K or W-Storage address, a register
address, etc.).

The redefinitions contalined on the Specifications cards are
filed in a table and erased at the end of the assembly of the
operation which they precede. This allows the table to be
used again by any succeeding operation in which XAAnn para-
meters must be redefined.

The most advantageous method of building a library of X-6 sub-
routines is to file each subroutine under an operation name
unique to itself with the cards in correct sequence. In some
cases a library subroutine may contain a number of operations
each of which has its own unique name. For library convenience,
an overall operation name should be given to the subroutine. To
avoid renumbering of the subroutine cards, before assembly, a
library subroutine should be assembled as a separate object pro-
gram operation, not as a part of an operation within the object
program.

L2 U 1774 ,1

ASSEMBLY INPUT CARDS

After an object program has been coded according to the X-6
coding conventions, the symbolic deck used as input for an
X-6 program assembly must be prepared. Besides those cards
that will contain the coded lines, other cards must be
prepared to set the limits within which the assembly is to
take place and to signal the beginning or ending of certain
assembly processing. That is, the beginning and the end of
an object program must be signalled as must the beginning and
end of operations within the program. Certain portions of
computer memory must be restricted from assembly assignment:
those locations that are used as absolute addresses in the
coding and the locations that will be used by tables and in-
terlaces, for example.

I. Symbolic Deck Organization

These are ten possible card types that may be keypunched for
an X-6 program. Of these ten, there are five card types
that must be used in any program to be assembled by the X-6
Assembly System:

Card Type Title
1 Label Card
7 Operation Header Card
8 Symbolic Detail Card
9 Operation Sentinel Card
10 End of Run Sentinel Card

Every prdgram must have only one Type 1 (Label Card) and
only one Type 10 (End of Run Sentinel).

Each operation must have only one Type 7 and only one Type
9. The number of Type 8 cards must correspond to the num-
ber of lines of coding in the operation and the number of
constants unique to that operation.

The other card types that may be used, depending on the
needs of the program are:

Card Type Title
2 Restrict Card
3 Tag Equals Card
L Interlace Card
5 Tables Card
6 Specifications Card

U 1774 .1
77 43

Card Types 2 through 5 cause particular memory locations to
be restricted from use by the X-6 Assembly System. Card
Type 6 modifies coding within a library routine before it
is assembled, thus allowing a redefinition of the library
routine variables just before each operation is processed.

The Card Type number (in the form Al, A2, through 10) is
keypunched in card columns 1-2.

When organizing the symbolic deck for a program, Card Type

1 must be the first card for input. All Types 2, 3, 4 and

5 cards must follow in numerical sequence. That is, all
Type 2 cards must precede all Type 3 cards, etc. the group-
ing within the card type is unimpar tant. After Types 1
through 5, Card Types 6 through 9 are arranged by operation.
That is, for each operation, the cards of that operation are
grouped in sequential order: all type 6 cards for an opera-
tion will precede the Type 7 card. The type 7 card will be
followed by all the Type 8 cards arranged in ascending se-
quence. The last card of each operation will be a Type 9.
Usually, operations are grouped according to their relative
importance in the program since the first assembled opera-
tion will receive the best possible X-6 latency minimization.
The last card of the assembled deck must be the type 10
card.

IT. Input Card Format
A, Label Card, Card Type 1

Function: To provide run identification for the edited
listing. The information contained in this
card will be printed as a header for each
page of the listing.

80 Card 90 Card

Columns Columns Format Name of Field
1-2 1-2 A Card Type
3-10 3-10 JAVAVAVAVAVAVAVAY Spaces
11-15 11-15 pPPPPP Program Identification
16-20 16-20 JAVAVAVAVAN Spaces
21-26 21-26 ddddd Date
27-30 27-30 JAVAVAVAVAN Spaces
31-45 AAAA . oAAAA Spaces
31-80 46-85 22%%...2222 Descriptive Comments
86-90 JAYAVAVAYAY Spaces

B U 1774 .1

Technical Notes:

1. Each run being assembled must have a Label Card as
the first card of the symbolic deck. If the label
card is missing, the computer will stop and display
67 0003 ccce.

2. Column 2 must contain a 1 punch.

3. Columns 3-10 are not examined by the system and
can be used, if desired, to record additional des-

criptive information. This information is not
printed in the output listing.

4. The program identification field is not altered
by an X-6 assembly and can contain any combination
of characters. However, the identification should
be meaningful to the installation (for example,
RUNO1).

5. Columns 16-20 are never punched.

6. An X-€ assembly does not alter the date field; there-
fore, it may appear in any format desired.

...... S e R

7. Since the comments are no
t o ny descriptive infor-

s field may c

altered by an X-6 assembly,
ain an

n
the comments

mation.
B. Restrict Card, Card Type 2
Function: Specifies the absolute locations that will be
used for some specific purpose and removes

them from the Table of Availability before
the Detail Cards, Card Type 8, are processed.

80 Card 90 Card

Columns Columns Format Name of Field
1-2 1-2 A2 Card Type
3-10 3-10 JAVAVAVAVAVAVAVAN Spaces

11-20 11-20 iirrrraaaa Entry 1
21-30 21-30 iirrrraaaa Entry 2
31-40 31-40 iirrrraaaa Entry 3
41-Ls5 JAVAVVAVAN Spaces
41-50 L6-55 iirrrraaaa Entry Y4
51-60 56-65 iirrrraaaa Entry 5
61-70 66-75 iirrrraaas Entry €
71-80 76-85 iirrrraaaa Entry 7
86-90 ANAAA Spaces

U 1774 .1 e

Lé

Technical Notes:

1. Column 2 must contain a 2 punch.
2. Columns 3-10 are not punched.

3. Entry contains ten digits in the following
format:
iirrrraaaa

ii is the increment between elements.
rrrr is the total number of locations to be
restricted.
aaaa is the beginning absolute address.

L, There is no limit to the number of Restrict Cards
that may be used.

5. There is no limit upon the total number of ad-
dresses to be restricted by a single entry.

6. A particular restrict card may contain from one
to seven entries. If there are less than seven
entries the first invalid entry field must con-
tain a sentinel word of nines (99 9999 9999).

7. The sentinel word stops the procassing of a partic-
ular card, it does not signal the end of Type 2
Cards. That is, if the last Type 2 Card contailns
all seven entries, 1t is not necessary to prepare
another card containing only the sentinel word.

The end of Type 2 Cards will be detected by the
punch in Column 2 of the next card.

8. During the actnal assembly of the symbolic deck the
interval of time during which the restrict card
information is processed may be great enough to
give the impression that the system has entered a
closed loop. Actually, the length of time required
is a function of the total number of locations to
be restricted. In some cases, this might require
up to seven or eight minutes.

9. All absolute addresses used in the X-6 coding of an
object program that will not be specified on:
a. A Tag Equals Card, Card Type 3
b. An Interlace Card, Card Type 4
c. A Tables Card, Card Type 5
must be restricted from X-6 assembly assignment by
an entry on a Restrict Card.

10. Usually the memory area required by a PTA routine
(0000-0199) is restricted.

U 17741

C.

Tag Equals Card, Card Type 3

Function: Assigns a specific memory location to a per-
manent tag, K-Constant, or W-Storage.

80 Card 90 Card

Columns Columns Format Name of Field
1-2 1-2 A3 Card Type
3-10 3-10 JAVAVAVAYAVAVAVAN Spaces

11-20 11-20 tttttAaaaa Entry 1
21-30 21-30 tttttAaaaa Entry 2
31-40 31-40 tttttAaaaa Entry 3
L1-L45 AAAAA Spaces
41-50 46-55 tttttAsaaa Entry 4
51-60 56-65 tttttAaaaa Entry 5
61-70 66-75 tttttAaaaa Entry 6
71-80 76-85 tttttAaaaa Entry 7
86-90 JAVAVAVAVAN Spaces

Technical Notes:
1. Column 2 must contain a 3 punch.

2. Each entry must contain ten digits coded in the
following format:

ttttthAagas

ttttt is the name of the permanent tag, K-Cons tant,
or W-Storage.

agaa 1s the absolute location to which ttttt is as-
signed.

3. There is no limit to the number of Tag Equals Cards
that may be used.

4. TBach Tag Equals Card may contain up to seven entries.
Any Tag Equals Card containing less than seven
entries must have a sentinel word (99 9999 9999) in
the first invalid field to stop processing of the
card.

17741 47

48

Interlace Card, Card Type 4

Function: Provides automatic restriction of the input
and output interlace positions.
entry on this card restricts all interlace

positions in the specified band for the unit
Information on the Interlace Card
also permits the addressing of elements sym=-
bolically rather than in absolute notation.

80 Card 90 Card
Columns Columns

1-2
3-10
11-20
21-30
31-ho

41-50
51-60
61-70
71-80

Technical N

desired.

1-2
3-10
11-20
21-30
31-40
L1-45

otes:

Format

A4
JAVAVAVAVAVAVAVAY
inAAAXaa00
inAAAxaa00
inAAAXaa00
JAVAVAVAVAY
inAAAxaa00
inAAAxXaa00
inAAAXaa00
inAAAxXaa00
JAVAVAVAVAN

Name of Field
Card Type

Spaces

Entry 1
Entry 2
Entry 3
Spaces

Entry 4
Entry 5
Entry 6
Entry 7

Spaces

1. Column 2 must contain a 4 punch.

2. Columns 3-10 are not punched.

A single

3. Each entry must contain ten digits coded in the
following format:

H for
R for
0 for

P for

inAAAXaa0
i is the type of interlace and must be:

the HSR
the RPU read station
the RPU punch station

the HSP

T or Z for tape

n is the interlace number (0-9).

X is the kind of interlace to be restricted:

0 for
1 for
2 for
0 for

produce a two

ga 1s the absolute

untranslated interlace
translated interlace

both

HSP and Tape interlaces.
part interlace.

an even number.
00 is always coded as 0O0.

For HSR and RPU

interlaces

Will always

address of the band and must be

U 1774 .1

There is no limit to the number of Interlace Cards
that may be used.

Each Interlace Card may contain up to seven en-
tries. Any card containing less than seven en-
tries must have a sentinel word (99 9999 9999) in
the first invalid field to stop card processing.

The X-6 Assembly System does not distinguish between
tape notations T and Z. The functions of these two
symbols is to allow the use of up to twenty Tape in-
terlaces by the use of T and Z plus digit n which
ranges from O through 9.

49

Tables Card, Card Type 5

Function: Specifies the absolute locations to be used
by a table or tables.

80 Card 90 Card

Columns Columns Form t Name of Field
1-2 1-2 A5 Card Type
3-10 3-10 AAAANAANAL - Spaces
11-20 11-20 tnAAAAaaaa Word 1, Entry 1
21-30 21-30 iiiAMAeeee Word 2, Entry 1
31-40 31-40 tnAMAaaaa Word 1, Entry 2
Li-45 AAAMAA Spaces
41-50 L6-55 iiiAANeecee Word 2, Entry 2
51-60 56-65 tnAAAaaaa Word 1, Entry 3
61-70 66-75 iiiAAAeeee Word 2, Entry 3
71-80 76-90 AAANee o ADAA Spaces

Technical Notes:

. Column 2 must contain a 5 punch.

nn -

Each entry must contain twenty digits coded in the
following format:

wWord 1 Word 2
tnAAAAaaaa iiiAANAeeee

t is the table identification (S, U, or V).
n is the table number (0-9).

aaaa 1s the absolute locatlion of the first table
element.

iii is the interval (or increment) between elements.
eeee is the total number of elements in the table.

3. There is no limit to the total number of Table Cards.

4, A particular Table Card may contain from one to three
two-word entries. If it contains less than three
entries, word 1 of the next invalid entry must corain

a sentinel word (99 9999 9999).
5. Columns 71-80, on the 80 column card, and 76-90, on

the 90 column card, are ignored by the X-6 Assembly
System.

U 1774 .1

F. Specifications Card, Card Type 6

Function: Indicates that the next operation to be as-

sembled contains parameters that will lie
in the range X 01 through X 20 and speci-
fies the X-6 symbolic address or the absolute
address to be substituted for each parameter.

80 Card 90 Card

Columns Columns Format Name of Field
1-2 1-2 A6 Card Type
3-5 3-5 www Operation No. (or Name)
-8 6-8 yyy Card Number
3-10 9-10 A\ Spaces
11-20 11-20 xAAnnsssss Entry 1
21-30 21-30 xAAnnsssss Entry 2
31-40 31-40 xAAnnsssss Entry 3
41-45 AMAA Spaces
41-50 L6-55 xAAnnsssss Entry 4
51-60 56-65 xAAnnsssss Entry 5
61-70 66-75 xAAnnsssss Entry 6
71-80 76-85 xAAnnsssss Entry 7
86-90 AAAAA Spaces

Technical Notes:

1.

2.

7-

U 17741

Column 2 must contain s 6 punch.

Each entry must contain ten digits coded in the
following format:

xAAnnsssss
xAAnn is the generalized parameter.

sssss 1s the address (symbolic or absolute) to
be substituted.

Necessarily, sssss must be some kind of tag line or
absolute memory address.

The total number of parameters allowed in the sub-
routine is twenty. However, there is no restriction
upon how many Specifications Cards are used. For
example, twenty cards with one entry each might be
used or four cards with five entries each.

Each card may contain from one to seven entries.
Any card containing less than seven, however, must
contain a sentinel (99 9999 9999) in the first in-
valid entry field.

A new specifications card may be introduced only at
the beginning of a new operation and must precede the
Header Card.

Information provided on the Specifications Card is
retained until the next operation begins.

51

52

G.

Operation Header Card, Card Type 7

'Function: Specifies the number or name of the operation

to be assembled. Serves to set counter for
processing of Type 8 Cards which will follow:

80 Card 90 Card

Columns Columns Format Name of Field
1-2 1-2 A7 Card Type
3-5 3-5 www Operation No. (or Name)
6-8 6-8 yyy Card Number
3-30 9-45 AMAA .« .ADAA Spaces

31-80 46-85 72%%...%2222 Descriptive Comments

86-90 AAAAA Spaces

Technical Notes:

1.

2.

Column 2 must contain a 7 punch.

The card number is stored and becomes the base for the
counter used when processing Type 8 Cards. Thus, the
card number may be any three digit numbers however,
for the most flexibility as a counter base, it is
usually 000 or 001.

The Descriptive Comments are printed without altera-
tion.

An output card will not be produced by the Operation
Header Card.

An Operation Header Card must precede each operation
to be assembled.

U 17741

H.

Detail Card, Card Type 8

Function: Contains the object program coding that will
be assembled by the X-6 Assembly System Pro-

gram.
80 Card 90 Card
Columns Columns Format Name of Fiela
1-2 1-2 A8 Card Type
3-5 3-5 www Operation Number (or Name)
6-8 6-8 yyy Card Number within Operation
9-10 9-10 AN Spaces
11-15 11-15 aaaaa Symbolic a Address
16 16 x Control Code
17-19 17-19 000 Symbolic Operation Code
20 20 A Space
21-25 21-25 mmmmm Symbolic m Address
26-30 26-30 cceee Symbolic a Address
31-45 AAAA...AAMA Spaces
31-80 46-85 zzzz...z222 Descriptive Comments

86-90 AAAAA Spaces

Technical Notes:

1.

2.

U 1774 .1

Column 2 must contain an 8 punch.

The Detail Cards must be numbered in sequence beginning
one number higher than the card number appearing on the
Header Card for the operation.

Only Columns 6-8 are extracted for the card number.
Therefore, columns 9 and 10 should not be used as part
of the card number, even though no other use is made of
them.

The Control Code, column 16, signals that conditions are
associated with the instruction. These conditions are

of three categories: 1Index Registers, negative constants,
and alphabetic constants.

The code used may be one of the following:

a. A if the instruction requires no specific control
information.

b. 2 for a negative constant.

c. 1,2, or 3 if an Index Register is to be specified.

d. U for the Unprimed portion of a two part alphabetic
90 column Card.

P for the Primed portion of a two part alphabetic
for 90 Column Card.

e. U for the Unprimed portion of three part alphabetic
for 80 Column Card.

53

ok

P for the Primed portion of a three part alphabetic
for 80 Column Card.

D for the Duoprimed portion of a three part alpha-
betic for 80 Column Card.

f. N for the Numeric portion of a two part alpha-
betic for 80 or 90 Column Card (machine code).

Z for the Zone portion of a two part alphabegic
for 80 or 90 Column Card (machine code).

An alphabetic constant, to be properly entered, should
be on two or three cards, depending on whether it is to
be two or three part image. These cards would contain
ldentical information, but the part of the image that
was loaded would depend upon the control code in column
16. Each card would be numbered in ascending sequence.

Column 20 is not used.

Refer to the section on Coding for a discussion of the
a, my and ¢ address possibilities.

The Descriptive Comments are printed without alteration.
Since the function of the X-6 Assembly System is to

process Detall Cards, these cards must occur in any sym-
bolic deck to be assembled.

U 1774 .1

I. Operation Sentinel Card, Card Type 9

Function: To advance the paper to the beginning of the

next page so that the record of each opera-
tion is distinctly separated on the output
listing, and to clear the storage tables con-
taining temporary tags and specifications in-

formation.
90 Card
Columns Format Name of Fileld
1-2 A9 Card Type
3-5 www Operation Number (or Name).
6-8 yyy Card Number within Operation
9-45 AAAA...AMAA Spaces

46-85 zzzz...2222 Descriptive Comments
86-90 AAAAA - Spaces

Technical Notes:

U 1774 .1

Column 2 must contain g 9 punch.

The Operation Number or name must be the same as
that given to the Type 8 cards of the operation.

The card number must be one more than the card
number of the last Type 8 Card.

The Descriptive Comments are printed without altera-
tion.

An Operation Sentinel Card must succeed the last
Type 8 Card of each operation to be assembled.

55

J. End of Run Sentinel Card, Card Type 10

Function: Signals that all of an object program has

80 Card
Columns

1-2
3-15
16

17-19
20

21-25
26-30

31-80

been processed. The computer will be
brought to an orderly halt.®

90 Card
Columns Format Name of Field
1-2 10 Card Type
3-15 JAVAVAVARRIRAVAVAVAN Spaces
16 x Control Code
17-19 000 Symbolic Operation Code
20 A Space
21-25 mmmmm Symbolic m Address
26-30 ccecee Symbolic ¢ Address
31-)"'5 AAAA..-AAAA SpaCeS
46-85 22%%...222%2 Descriptive Comments
86-90 AMAAA Spaces

Technical Notes:

1.

2

Columns 1 and 2 must contain a 1 and O punch res-
pectively.

All entries on the card from column 16 through the
last column follow the same rules as the Detail Card,
Card Type 8.

The symbolic instruction contained on the End of Run
Sentinel Card will be translated and punched on an

output sentinel card (it is assumed that the program
deck nroduced by an X-6 ascom'h'lv will be 1naded ‘hxr a

wo N peYenLTR ST aL RS e 5 20Ny & L v e RS =4 0 S wi V-4 =3

PTA routlne. These routines require the sentlnel
card to contain the first instruction of the object
program).

The Descriptive Comments are printed without altera-
tion.

Every object program assembled miust contain an End
of Run Sentinel Card.

5The final stop is 67 8888 ccce (ccece being the first a address
of the X-6 Assembly System Program).

56

U 177€ .1

OUTPUT CARD FORMAT
The cards produced by the X=6 Assembly System are the machine
code equivalent of the X-6 Symbolic input cards. This output
format is acceptable to the loading routine. The differences
between the X-6 produced card format and the exact PTAO1 format
are:

Card X-6 Produced Output Load Routine Input
Columns Card Contents Card Contents
1-5 Five digit program identi- Program Name.

fication from columns 11-15
of the X-6 Label Card, Type
1.

11-16 Operation and card number Page number, line number
from columns 3-8 of the X-6 and suffix.
input card.

47-50 Card number in X-6 produced The PTA routines require

deck. a card count on the last
card of the input deck
only.

U 17741 57

PROGRAMMING PROCEDURES
I. Flow-Charting

The only modifications to standard flow-charting procedures
are:

A. Operations should be kept short and well defined.

B. Designations for an operation are shown as:

ASINF ASJNF

Permanent tags should be assigned to

. these triangles representing opera-
 Operation tion (or subroutine) entrances and
exits.

C. Communications links within operations are shown as:

ASINF e l
For example, '
O in connec- | LDA ADDKAO12
tors:

Temporary tags should be assigned to these. @

D. Execution of one operation within another operation is
shown by:

ASINF

For

example: ' LDA ‘ STA

E. X-6 symbology should be used in the flow chart. Table and
interlace symbols and working storage addresses should be
assigned during flow-charting.

58
U 17741

ITI. Coding

When coding, it must be kept iIn mind that buffer tests are
not inserted by the X-6 Assembly System but must be in-
serted where required during the coding or after the object
program is assembled. Accurate estimates for buffer test
insertions can be made by consulting the Latency Minimiza-
tion Section, above. Aside from this, the general rules
for X-6 coding are:

A. Start each operation with a "Header" line (see Card
: Type 7 in Input Card Section, above) on a new sheet
of coding paper.

B. Code the main chain of the object program first and
then the lesser used branch paths. Since each address
is assigned in order of reference during assembly, this
technique will produce better minimization.

C., The comments columns should be used liberally since
the X-6 produced edited listing will be more valuable
for desk checking if full comments are appended.
Comments should be limited to numeric and alphabetic
characters.

D. A cross reference to the card number on which the in-
struction line is to be punched should be maintained
in the box on the flow chart.

E. FEBach operation should end with an Operation Sentinel
Card (see Input Card Format, above).

F. Initial conditions of all working storages should be
coded.

The memory is usually filled with stop orders using PTAO!.

U 1774 .1 59

PREPARATION FOR THE X-6 ASSEMBLY

60

Have all operations keypunched and verified.

Obtain any needed X-6 library routines and prepare specifi-
cation cards.

Prepare card types 1, 2, 3, 4, 5, and 10 if this has not al-
ready been done. Be sure to restrict the area used by the
standard loading routine.

Arrange the input deck in the desired order. If the'program-
is very large, place the most important operations first;
they will get better minimization.

Sight check the separate operations to make certain that
card types 7, 8, and 9 within each operation are identical-
ly punched in columns 3-5 (operation number).

Either manually or by machine, check that card numbers are
ascending within operations with no omissions.

U 1774 .1

OPERATING INSTRUCTIONS FOR THE X-6 ASSEMBLY

I.

Loading and Assembling

1.

Load X-6 Program Deck.l If the deck is in the three in-
struction per card format use a PLD routine. If it is
in the one instruction per card format use a PTA routine.

After X-6 is loaded, or earlier:
a. Feed blank cards through to all stations of the RPU.

b. Advance paper in HSP so six free holes show above
the paper holding clamps.

¢, Put X-6 input program deck in the HSR.
To assemble a program:

a. Set on continuous, depress general clear, and de-
press Run button.

b. Successful stop is 67 8888 cccc.

c. Error stops are listed on the following pages along
with error indications which do not stop the com-
puter.

After assembly, the output program deck is complete in
Stacker zero of the Read-Punch Unit. Any cards in
Stacker one should be destroyed.

Check the edited listing carefully, all detected input
data errors are coded and tabulated in print word 01 o
the listing. These errors must be corrected before
desk checking can begin.

P

1

Print the contents of the memory to preserve the informa-
tion accumulated during the assembly which will be useful
for desk checking.

The X-6 Memory Layout, see below, can be used to inter-
pret the contents of the memory.

The following routines might also be used, after one
X-6 assembly, and prior to the next.

a. An X6LNU routine produces a list of all storage lo-
cations not used by the assembled program. This
routine should be used after printing the contents
of the memory.

1See X6TLD for instructions to load X-6 instruction tape.

U 17741 61

b. An X6LUR routine produces a listing of all storage
locations with operation and card number of the
program's contents,

II. Error Codes (These appear on listing)

Code Originates In Means
A Permanent Tag Search More than 300 permanent tags.
Routine. Address 9999 has been assigned.
B Temporary Tag Search More than 50 temporary tags.
Routine. Address 9999 has been assigned.
C K/W Search Routine. Address higher than XK 299 or W

299 has been requested, 9999 has
been assigned.

D Memory Availabllity No more storage. Have assigned
Routine. 9999.

E Memory Availability No two consecutive addresses
Routine. free. Have assigned 9999,

F Specifications Table Nothing in specifications table
Search Routine. matches this "X" symbolic address.

Absolute 9999 has been assigned.

G Address Analysis Rou- An incorrect "a" address. Pre-

tine. vious instruction had blanks in

m or ¢ part. This a should have
been blank. This a has bheen
processed properly - the previous
line must be fixed.

H Process Action Code Spaces iIn m and c. Spaces in m
Routine. will be assumed to be in error.

I Instruction Code Invalid instruetion code. The ¢
Analysis Routine. address will be incremented by 3,

a 67 instruction will be punched
in the Op portion of the output

card.
J Interlace Avallability Reference has been made to a word
Routine part in an interlace which was

not properly restricted in summary
card type 4. Address of 9999 has
been assigned.

62 U 1774 1

III. Stop Codes (in m part of STP order)

Code

0001

0002

0003

0004

0005

0006

0008

0009

8888

Originates In

Get Next Card Routine.

Get Next Card Routine.

Main Chain Routine.

Process Specifications
Entry.

Print Routine.

Punch Routilne

Main Chain Routine

Process Detail Card
Routine.

Process Detail Card
Routine.,

Main Chain Routine.

Means

The card being diverted to HSR
Stacker 2 has failed to pass
read check. Reposition cards
and depress Run button to try
again.

Malfunction in HSR has caused

overflow. Fix trouble. Depress
Run button to try again.
No label card (Type 1). Prepare

label card. Reposition input
deck. Depress Run button to be-
gin again.

Too many specifications for cur-
rent library routine. Depress
Run button to proceed. Error
code F will appear later.

Malfunction in printer has
caused overflow. Fix trouble.
Depress Run button to print cur-
rent line. (It was PRN order
that caused it).

Malfunction in RPU. Fix trouble.
Depress Run button to execute
punch order.

Card type sequence error. Check
last card read. If it is a type

7 card, depress Run button to

get to next stop order. Go to ¢
to process card. If it is type 8,
go to m of next stop order.

Operation number on detail card

is incorrect. Depress Run button
and machine will stop on 67 order.
Go to m to process card. Go to ¢
to get next card.

Card number on detail card incor-
rect. Same action as 0008 Stop.

Final successful stop. Reload
last 100 cards of X-6 deck and
follow normal operating instruc-
tion before depressing Run
button if new assembly is wanted.

63

III. Stop Codes (in m part of STP order cont.)

Code

0010 Main Chain Routine.

Originates In

IV. X-6 Storage Layout

Means

Previous card was type 9, card
now being processed is not a
type 7 or 10 card. Depress Run
button. If card last read is
to be processed as type 10
card go to the c¢ address of
this order. If it is to be
processed as a type 7 or 8
card, go to the m address.
This will transfer control to
another stop order. Now if the
card to be processed is a type
75 £0 to the ¢ address of this
stop order. If it is to be
processed as a type 8 card, to
m address.

A listing of the memory at the end of a successful assembly
is desirable for desk checking and patching of object pro-

gram.,
Location

0800

! 0816

—

2110-2117

2118-2130

2100-2109

2200 Band

3250-3299

6l

Name

Table S8

Table S9

Table V3

Table V4

Table S5

02 Interlace

Table S3

Use

Valid mnemonic codes stored 20
words apart.

Information words for each
mnemonic code stored 20 words
apart.

Two or three part interlace word
position for 0.

Two part interlace word position
for P.

Interlace origins (from card type

)'1')0

Repunching of output cards which
fail read check.

Temporary tags with absolute ad-
dresses. Cleared after every op-
eration. No value after complete
assembly.

U 1774 .1

Location

2450-2465
2470-2479
2480-2509
2520-2539

2540-2559

2800-3099

3100-3249

3300-3599

3800 Band
L4000 Band
4200 Band

U 1774 .1

Name

Table

Table

Table

Table

Table

Table

Table

Table

PO Interlace
HO Interlace
01 Interlace

Ve

S6

S7

A

VO

sk

S2

St

wn
o

Use

Two and three part interlace word
positions for H and R.

}nterlace origins (from card type
4.

Table origins and Iincrements
(from card type 5).

X-6 equivalents for last set of
specifications.

Specifications. Cleared after
every operation. No value after
complete assembly.

K and W addresses and absolute
addresses are stored as follows:

2800 KO and WO as OKKKKOWWWW
2801 K1 and W1 as OKKKKOWWWW

Address of permanent tags in
same order as Table S1, stored
as: Oaaaalaaaa. Left half-words
used for first 150 tag-addresses,
then right half-words are filled.

Permanent tags. The 5 character
alpha-numeric tag 1s stored as
zzzzznnnnn. One tag per word.

17 Tarnh wnnA

Tahilit

e P UJ’ L] g oLl LIRS IV
of table represents a band rela-
tive address, 0-199. The 20 bits
in the left half-word are zero
for unused or 1 for used repre-
senting the 20 standard access
bands. The 20 bits in the right
half of words 3600-3649 repre-
sent high-speed access storage.
Addresses 4000, 4050, 4100 and
4150 are included in first digit
of right half-word. Right half
of words 3650-3799 are unused.

Q+r\-nage ayvyai

UL AV 4L

T
6]
S

Header for X-6 listing.
High-Speed Reader read-in area.

Output punching area.

65

Location
4200 Band
4400 Band
0000-0199

66

Name
RO Interlace
P1 Interlace

Restricted

Use
Read-Punch Unit read in area.
Detail lines for X-6 listing.
Used to load X-6 and later

filled with memory print rou-
tine.

U 17741

APPENDIX I

Operations and Subroutines within the X-6 Assembly System
Program.

AAR

ACO

AC1

AC2
AC3
ACh
ACS
CAR

CEP

CON

CPI

EDS

EMP

EDX

FIE

GNC
GNE

Address Analysis Routine - Analyzes the five character ad-
dress in the a, m, or c portion of an instruction to deter-
mine which lower level subroutine should be used for pro-
cessing.

Action Code Routine - After the PDC path has been completed,
ACO continues the processing of instructions containing op-
eration codes belonging to the Action Code O group.

Action Code 1 Routine
Actlon Code 2 Routine Same as ACO except that proces-
Action Code 3 Routine sing is done for a different Ac-
Action Code 4% Routine tion Code group in each case.
Action Code 5 Routine

Clock Adjustment Routine - Updates the clock to the new re-
lative band level after an address assignment.

Edit ¢ for Print Routine - Edits the ¢ address for print-
ing.

Process Constants Routine - Converts the mnemonic control
indicators into computer code keys.

Clear Print Interlace Routine - Clears print interlace 1.
Edit a, m, or ¢ routine - Edits the a, m, or ¢ address
prior to processing. EDS includes the subroutines:

EDA, EDM, EDC.

Edit m for Print Routine - Edits the m address for print-
ing.

Edit X routine - Establishes the Tentative Next Best Band
Relative Address for clock option.

Further Input Edit Routine - Provides additional input
editing for card types 2 through 6.

Get Next Card Routine - Obtains next card image from HSR.

Get Next Entry Routine - Provides next entry from card
types 2 through 6.

U 1774.1 67

IAl

IA2 Interlace Routines - Used by Input/Output interlace
IA3 routines to determine interlace locations.

IAL

IAS

IAH - RPU Interlace Routine - Converts a symbolic reference to
an HSR interlace address to its real address equivalent.

IAQO - RPU Output Interlace Routine - Converts a symbolic refer-
ence to an RPU punch interlace address to its real ad-
dress equivalent.

IAP - Printer Interlace Routine - Converts a symbolic reference
to a printer interlace address to its real address equi-
valent. :

IAR - Reader Interlace Routine - Converts a symbolic reference
to an HSP interlace address to its real address equivalent.

IAT - Converts a symbolic reference to a tape word address to
its interlace position equivalent.

ICA - Instruction Code Analysis Routine - Examines symbolic in-
struction codes for validity and obtains the correspond-
ing computer code information word for processing.

IFT - Initial Fill Tables Routine - Initially fills the internal
X-6 Assembly tables with proper bit configurations.

KWS -~ K~Constant Working Storage Routine - Assigns initial loca-
tion to symbolic Working Storage or K-Constants and ob-
tains this address at time of later symbolic reference.

MAR - Memory Availability Routine - Keeps a record of assigned
locations through use of a single bit position-one location
table scheme. Also differentiates between Fast and Normal
access areas and ensures consecutive location assignments
for c+1 conditions.

MC - Main Chain Routines - Provides the main line of logic flow
for the X-6 Assembly System. Consists of subroutines: MC1,
Mc2, Mc3, MCk, MC5, MC6, MC7Z, MC8, MC9, MCX, and MCK.

MLC - Modify Latency Counter Routine - Modifies the Latency
Counter when a clock option is detected.

PAP - Print and Punch Routine - Provides additional editing prior
to printing and/or punching.

68 U 17741

PDC

PIE

PRE

PRN

PSE

PTE

PTR

PTS

PUN

RES

STS

200

TAB

-3
o>
tn

Process Detail Card Routine - Provides the processing of
the X-6 symbolic instructions contained on the Detail Card,
Card Type 8.

Process Interlace Entry - Sets up restricted input/output
interlaces as defined on the Interlace Card, Card Type 4.

Prepare Restrict Entry Routine - Edits restrict entry prior
to processing as specified on the Restrict Card, Card Type
2.

Print Routine - Controls the printer listing of the ini-
tial specifications and the parallel listing of symbolic
input and computer code instruction output.

Process Specifications Entry Routine - Processes the speci-
fication entries on the Specifications Card, Card Type 6.

Process Tag Equals Routine - Processes the tag equals en-
tries as defined on the Tag Equals Card, Card Type 3.

Process Table Restrict Routine - Coordinates the restric-
tion of locations defined in restrict and Table specifica-
tion entries.

Permanent Tag Search - Assigns an address when initial
reference is made to a permanent tag and locates this ad-

dress at time of later references. Includes subroutine
PTT for filing permanent tag entry in table.

Punch Routine - Controls punching of X-6 machine coded
output instructions.

- Restrict Routine - Restricts memory table as entries on

Card Types 2 through 5 are processed and as locations are
assigned during assembly.

Specifications Table Search Routine - Searches specifica-
tions table for an identity when symbolic reference is
made to an X-entry.

Band Relative Address Routine - Creates a bhand relative
address from a four digit absolute address.

Prepare Table Entry Routine - Processes table entry as de-
fined on Table Card, Card Type 5.

Table Address Routine - Calculates a specific table address
when a symbolic table reference is encountered.

U 1774 .1 69

TTS

Uo2

UDC

UIE

70

Temporary Tag Search - Assigns an address when initial
reference is made to a temporary tag and locates this ad-
dress at time of later reference. Includes subroutine
TTT for filing temporary tag entry in table.

Undigit Two Routine - Eliminates space bit configuration
when necessary.

Update Clock Routine - Updates latency clock according
to information contained in clock option.

Universal Input Edit Routine - Edits input card and trans-
fers fields to working storage.

U 1774 .1

APPENDIX II

X-6 Assembly System Flow charts

Routine

U 1774 .1

AAR
ACO
AC1

AC2
AC3
ACH
ACH
CAR
CEP
CON
CPI
EDA
EDC
EDM
EMP
EDS
EDX
FIE
GNC
GNE
IAl

IA2
IA3
TAY
IA5
IAH
IAQ
TIAP
TAR

Index To Routines

Flow-Chart
Page

79-80
74

Routine

IAT
ICA
IFT
KwS
MAR
MC

MLC
PAP
PDC
PIE
PRE
PRN
PSE
PTE
PTR
PTS
PTT
PUN
RES
STS
200
TAB
TAS
TTS
TTT
Uo2
UDC

UIE

Flow-Chart
Page

86
7l
84
76
81-82
72
87
77
73
84
85
77
84

85
85
8l
N
g
N

71

MAIN CHAIN ROUTINES

‘la AAR

DATE & PROG. 1.D. SET UP FOR INITIAL CLEAR IN- 2 MaB
—=PRINT INTER |}, SET COUNTERS FaN MC6 MAIN PART b~ SWITCH {— DICATORS Sb, 66 RES
LACES & STORAGE| {AND OF RUN SETTINGS* & CLOCKS la MC8
4o, Sa €O

o
S

CARD TYPE 1

-——————

. 2a, 3a AC2
CARD TYPE § —— —— ~— o — — — el et B
STOP 3 1a PRC

0003 180, 1.9a MAR
wer b 1AH
5a, 61 PUN
CARD TYPES 2.4 e e e N a 6a
0 =02 SET 2a YES
- A] AND 3a CARD SET 1b
N TYPE 67 IN MC8

NO
NORMAL NO MORE

EXIT YES ! ENTRIES
———— T
CARD NO.
1 SET 2a
5.3 IN MC9

~_®_ o —oa | | ser 2 STORE A Mex
— rA AND 3c IN w.5.6 CARD TYPES 8-9 e e e e e o e e e

SPECIAL
EDITING

’ °
CLEAR TABLE
&INTERLACES;
SPEC, EDITING

R
stop F® 7 CARD
IF “m*"-8 CARDf~— == —— == -
CARD TYPE 10 IE -5 CARD
YES CLEAR EDIT
PRINT M1 peint] SELE
LOCATIONS| |LocATIONS

CURRENT
CARD
TYPE?

ENTRIES
° 1 AND 2
kST ORAGE
YES ’
ENTRIES
=~ 3 AND 4
-5 TORAGE
N,
\ ENTRIES
X 5 AND 6 T
\ [*~STORAGE i
STOP Vo
IF“m'-7OR8 | * 19 CARD

1
STOP f—dReech.
o 0010 IF**<’"-10 CARD
§ HIT START BAR

CARD
TYPE 107

NO|

SUCCESSFUL
sTOP
67 8888

FOR NEW
ASSEMBLY

®

STOP
IF “'m"*-8 CARD [™MC9-1
IF “c"*-7 CARD {~MC9-3

(R VAN

L*R4LL D

PROCESS DETAIL CARD ROUTINE
EDIT INFO. TO
PRINT FROM NORMAL

DETAIL CARD FINAL SENTINEL

CARD

q

,

EDIT "o AND_ EDIT INSTR. CODE e
PoC CONTROL INDICATOR _@_ AND “im” _@__ ‘EglrElN‘:w _@ aw b %0 | W
0 P05 To PiYos z FINAL SENTINEL IN PAP g
A}
. CARD

CHECK OP.
AND CARD
NUMBER

5.3+ RETURN W.s. 6 RETURN RETURN
4 W.5.3 :W.5.44 Vs d - “LiNe (cLock) f— "LINE LINE
— b e WS, 7 -l -l

R

-
=t
.
o
m
A
i z

SET FOR
410 @
—rl

SR RETURN
o-{ T ®
- L
. MNEMONIC CODE
IN FORM
4
RA : RA :
®_._ 7.1a ZZZNNN ZZZNNN @
FOR LIR FOR IIR

1
i
TEST
égg‘; ISFT'O':" --JI MNEMONIC
ooos —»GNC CODE

"

CODE [rmms==+
0009 —=GNC

I

o F-

o
@

ZZZNNNO-0

- W.5. 5

ta” TO OUTPUT CARD “a TO

TRANSLATE L PUNCH NUMBER TO |—q PINO2
-S. STORAGE P INO8 P1NO3 s oET
INFO. WORD b,

IN'¥X, W.S. 5 |N]A'co

FROM ICA
O
A) EDIT INSTRUCTION
X DIGIT 8-10 X DIGITS -7 COBERYSTO
9 A []-W.s. 42 A WS, a3 p1No3
YES 7
1S 3rd DIGIT SET b
iN

OF INSTR. CODE
A‘C

AC26N
ANALYZE
= ACTION
CODE
TEST CONTROD
INDICATOR < <
KEY TO PRINT N\ SL2W.S. 5 TEST . .
ERASE || - st b St —< :)
U,P,D,N, or Z W DIGITS 2-10 TN ‘ e '
—r
- PUT CONTROL Z 2
sL 5 ERASE ALL A
@ w.s. 22 [~ 8UT DIGIT 1 P =t
Acl
IN
< <

ADD 1 >
KEY TO ()
=4 TO W.5. 6 ot 7.1
PNo3 (cLock) 4

i

(RS TAREN

INSTRUCTION CODE ANALYSIS ROUTINE

PICKUP SINGLE ———
ws. 5 TABLE S8 ENTRIES SINGLE EMTRIES J—fSENTINEL H'S TABLE ENTRL S |~ OF w:s, 24 0o00010-0
- TRaND. AGAINST CODE — SEEN CHECKED? AR
| I NO
GETA PLREopsR INCREMENT ENTRANCE FOR AC3
TAB 59. "
INFORMATION —@ PICK UP ORDER __.@
s 00010-0
NO MATCH
IN TABLE

ACTION CODE 1 ROUTINE ENTRANCE FOR AC2 AND AC4
YES

A
—=X,] w.S. 4
ACTION CODE 2 ROUTINE NORMAL @
ERROR CODE 6750000003 °
@""‘ =L X 3 ica /
EDIT "
ADDRESS
1T rew WG SECor?RAr?gic? SET w.s. 6 ,-@
CLOCK OPTH 8.
INFORMATION WORDS INSTRUCTION. ® A —WS. 7
VALID CODES
FOR CODES NORMAL
INCREMENTS OF 20
INCREMENTS OF 20
TABLE 58

TABLE §9

1 Par
ACTION CODE O ROUTINE

6 + . I
.S, 43
5. 7

SET 2a SET 1b
AND 30 IN AAR

NORMAL

ACTION CODE 3 ROUTINE
SET 1b
IN AAR YES
ADD SHIFT EDIT
SHIFT
AMOUNT TO jrmen SHIFT
ORDER? W.S. 6 ORDER

EDIT
ADVANCE
ORDER

NUMERIC OH
GREATER SHIFT 10
THAN 49? SYMBOL

—

NO

INUMERIC OF BUILD
ADVANCE |__IREMAINDER
SYMBOL OF IﬂJM'ERIC
'm

—- rA

GREATER
THAN 597

GREATER NUMEKECCE)F
ADV.

THAN 69? SYMBOL

— rA

NUMERIC OF]
ADVANCE
SYMBOL
— A

[T

72

ACTION CODE 4 ROUTINE

SYMBOLIC

YES

REFERENCE OF jrme—ed
BAND ?

SET EXIT
IN AAR

iNO

EDIT ABSOLUTE
BAND INTO
W.S. 4

NO

EDIT PAPER IS 1T EDIT PAPER ACt
ADVANCE PART GREATER ADVANCE AND }— M
OF W.S. 24 THAN 49? BAND ADDRESS

ACTION CODE 5 ROUTINE

RO

EDIT M FOR PRINT ROUTINE

WAS
REGISTER

POSITION *'m**
IN WS, 4

PD.S.:“‘E!ON SE]; TEGISJER
IN W.5. 0 DTCOA.{) R

EDIT C FOR PRINT ROQUTINE
NO

WAS ‘et
REGISTER

STORE N
—‘ : ’-— AND Z —
FOR PUNCH

AND Z

SET UP
'c'* ADDRESS

STORE N

FOR

PUNCH

1 FOR PRINT

EDIT "¢ ADDRESS
RIN

INTERLACE

POSITION “*c” SET REGISTER
ADDRESS IN INDICATOR
w.5. 0 TO 0

EDIT “'m*”
FOR PRINT
CEP

CLOCK ADJUSTMENT ROUTINE

X et
W.5. 69

FX —
CLOCK

NO
1S LAST ja——
ASSIGNED ADD. ws. 4 X
FAST ACCESS? — X CLock
YES
TENT. BEST X — LAST ASSG.
NORMAL w.s 68 |—— "ADDRESS
— X -A- —
B-A+
W.s. 7
—rX
ADD 50
TO 8
ADD 50
TO A
TABLE ADDRESS ROUTINE
[z]z 2 [zi [zs [[N [N [NGTN] wese0
ADD N, MULTIPLY
Ft DIGITS NN,N, BY STORE CALC.
—| To constanT || NN
SET IN AAR INCREMENT. [| ABSQLYTE ADD.
—=¥.5. 11 ADD ORIGIN >
FREE INCREMENT ORIGIN
i, P, e
srcooof o oo TP fls]sl:]+
s
57-010
v
$7-020
u
57029
TABLE §7
30 WORDS

94

peRlLL B

PROCESS CONSTANTS ROUTINE

INDICATOR
IN b
ZN 0-0

rd
W.S. 24=prA P
A MTC o -(&) LA

W.S. 25epmrX

\,

U STORE
A=p-W.S. 14
0tmrX " X FOR
@'—[I"—< :)—‘l X==W.S. 15 |'-— PoeH —-@

EDIT KEY OF
5 FOR PRINT

EDIT KEY OF
7 FOR PRINT

W.S, 24=>rA
W.S. 2

) MUST BE Z

1=>-w.5. 13
N/F IND.

|z’l7?|z3lztlzs['*|l"zl"al"4['&l W.s. 0

K-CONSTANT WORKING STORAGE ROUTINE

OBTAIN INCREMENT
AGAINST

FROM DIGITS 8-10 TEST INCREMENT
CF

NO

LiMiT

|YE$

9999 e
LAST ASSIGNED
+ ADDRESS

IS LOCATION
AVAILABLE?

BUILD
INSTRUCTIONS

FROM W.S. 10

- A

TABLE ENTRY _@

PICKUP TABLE:
ENTRY AND
STORE

¥.5. 10 W.S. 4 =-rX-
=>rA b—d LAST ASSG SR
SLg . ADDRESS

ABSOLUTE ADDRESS ABSOLUTE ADDRESS
FOR K'S FOR W’'S

54 000

$4299

CLLLLLLLL -

400 WORDS
INITIALLY FILLED
WITHH'S

TABLE sS4

ERASE
RIGHT
HALF

—{

STORE BACK
IN TABLE

L*HLLL A

4L

PRINT ROUTINE

No
ADD 2 1S COUNTEK .
TO CQUNTER ABOVE 607 AN eRltace!
1
YES |
NORMAL
ENTRANCE ! sTOP
L—4 cooe
6005
ADVANCE 14 ADVANCE 4 10 e UPDATE PO
AND PRINT PO 1 AND PRINT P1 |— —
t INTERLACE INTERLACE COUNTER INTERLACE
]
: -
sToP STOP
L oo L-— 4 cope
0005 0005
NO
| susTRACT 15 dd USE 14+ dd BUILD ORDER ADYANCE]
COUNTER FROM GREATER FOR AMOUNT j=—{ AND AMOUNT AND PRINT
$8-3=dd THAN 357 OF ADVANCE OF ADVANCE 1' PO
VES |]
SPECIAL |
ENTRANCE ADD 14 USE F£d, L $T0P
Y0 dd FOR AMCUNT =1 COOE
OF ADVANCE 0005
USE Bd,
FOR AMCUNT
OF ADVANCE
MUST BE
e USE Hd,
FOR AMOUNT
OF ADVANCE

PRINT AND PUNCH ROUTINE

SPACES
P103
P04

70 SPACES TO
3 P108 la
P102

SPACES TO
P10t

0 wsS. 8

MC9
2

SPACES TO
PIY

SET UP NUMERIC SET UP ZONE
C' INSTRUCTION IN W.S. 14 [=={ INSTRUCTION IN .5, 15
; OP mmmm ccee OP mmmm ccce

\
\

PUNCH ROUTINE

PUN
N

NOR MAL.

o1 HO-O

r--

G OP. MUMBFR & COMPLETED UPDATE FARQ MNC.
ONOmBER A RDDRESS INPUT CARD INSTRUCTICN AN ey
UNCI 1 Trerec NUMBER = — PUNCH —— PUNCH
INTERLACE PUNCH INTERLACE INTERLACE INTERLACE
FIRST CaROF™ oap INTERLACE
s:}—— : .5b 3 — 5 1ORAGE 14
BUFFER 8 W.5. 51-W.5. 58
/
/
/’seconn
CARD
P UNCHOCARD UNLOAD 5 IN [SFTROLRAACGEE
FROM -4:)—' se |—{ — —
01 BAND BUFFER W.S. 76-W.5. 83
l \ NO
¢4
\ TOMPARE R
e \ o H e
- : Wl G
0006 \ WITH STORAGE | ErroR o
\ /
\ OTHER CARDS ’
RPU BUFFER
——
INTERLACE
\ NO
\ FRROR
\, COMPARE _ |
I R e
ST Ww.s. 74-w.5, 83 | ERROR
\\:\\§~~

SET ONLY BY
SENTINEL CARD

SPACES TO
01 BAND -l4e

SELECT ERROR
STAC‘KER -

O HO-O-©

END OF RUN

13N
W. 5.51-58
SELECT TRANSFER PUNCH CARD BUFFER
ERROR 1 STORAGE TO FROM 02
STACKER =1 02 BAND ' BAND INTERLACE
‘REPUNCH ODD NUMBERED CARD : l
L ERROR
- CODE
0006
W. §. 76-83
SELECT ' TRANSFER PUNCH CARD BUFFER
ERROR STORAGE TO' FROM 02 —
STACKER 1 02 BAND BAND INTERLACE

REPUNCH EVEN NUMBERED CARD

PUNCH INTERLACE

+14b 1
PUNCH INTERLACE .

SENTINEL Z'S OUTPUT CARD NO. -
o - TO

————
—

LRl

GET NEXT CARD ROUTINE

SELECT MOVE IMAGES UNLOAD CHECK READ
STACKER #0 | | Bb’#g@%o AT FIRST READ| BUFFER TO | | SECOND READ
AND READ A BUFFER T2 [o gEservE " SAME AGAINST RES.
CARD STOR. INTERLACE STORAGE
! .
! I e+l FAIL
i -
STACKER
i SeEcTh
0002 0002
GET NEXT ENTRY ROUTINE
S 20
—_— 5. a
Vs, 29 ¢
FIRST ENTRANCE
ENTRY 2
(: — S,
WSl 29
[
11
I
1
/
b
II w.
[7
7
7
I
i o ws
/ .S,
I WS, 29
7 Ié 4
o
i GNE
5 _@__ ENTRY 5
——— W.S.
BB “ws. 29 NORMAL
s EXIT
N
WO\
SUBSEQUENT WM
ENTRANCES N ENTRY 6
A W.S. 28
\ \ w29
\‘ \‘
A
Y
LY
itou EH
‘\‘ Ws.
\
\
\
\
() SPECIAL
EXIT

FURTHER INPUT EDIT ROUTINE

INPUT CARD
o PN os
™ P1204-05

SPACES TO
P101

/A

ECR L TO EXIT

cPI 3PACES TO

UNIVERSAL INPUT EDIT ROUTINE

ENTRANCE FOR CARD TYPES 8-9

OPERATION NO. CARD
0 —| caroTveE CARD TYPE | pINz NUMBER
—p- PIN — W.S. —
W.S. 45, W.S. 46 P1Z02
ENTRANCE FOR CARD TYPES 1-7 NORMAL
EXIT

-]-O

ERROR CODE PRINT ROUTINE

INPUT CARD
@__ COLUMNE 3180
NO9-
> P1Z09-13

SPACE EDIT
P101
P102

UNLOAD

SHIFT PINO1 BUFF
AND P1Z0T [=] ERROR CODE

TLEFT

CLEAR PRINT 1 INTERLACE ROUTINE

P102-06

UNDIGIT TWO ROUTINE

, SPACE EDIT
@_ PINO2
PINO7

>
ERASE A ERASE A ERASE
uo2 16— 0 rAseL S e
OF rA OF rA OF rA
w
»rA
A ERASE >
-t 1 19 rAzrL
OF rA™

CARD
NUMBER
o W.S. 44

SPECIAL
EXIT

L*hédL o

€4

ZONE

HBRBABRNNAEN

NUMERIC

W.5.0

ADDRESS ANALYSIS ROUTINE

RL ==
AAR EXIT

MUST BE
NO L ALPHABETIC .) '
R ERASE ALL BUFF \
BUT Z SL4 0-03
[~ rA=rX - 40-0 rA:0-0 Z5 2 1 Z5 .2 " 0
4 FROM W.5.0. INTO rA j \ ->W. S.
7
(> - "
] IS N
=
® I Gl [S K ___@
: 0-01 5° 0-W.S. 70
NUMERIC N, 16 —s. 0 (}
SET IN AC2 ;
= MUST BE
rA # #
IS F N -
MUST BE
TORZ 1=»w.s, 13
GO e ~ T

&

z
N
z
o

? 4
e)—0O
MUST

01s
ABSOLUTE

[

= = BE R

MUST BE
H

NEXT ‘‘A"" ADDRESS
—» LAST °
ASSIGNED ADDRESS
MUST BE CLOCK
—-02
W.5.8 | '(16}

ISP

0-02
—-W.S. 70

&

o

TENTATIVE BEST
NORMAL —»-
LAST ASSG. ADD.

0--01

~ .S, 8

WS, U = WS 4

1S 0-02 IS
L} —»W.S.0 0

1 =
W.S. 70

e

ALL TAGS |

PRINT ERROR CODE G.
'S IN PREVIOUS
INSTRUCTION INDICATED

THAT THIS INSTRUCTION"®

SHOULD BE A'S ALSO.

O

ERASE ALL BUT
Z ANDN

FROM W.S. 0

- 7

RA : 0-0 A0000

TEMP =
TAG

PERM
TAG

08

LURLLL 1

S.v.u

ABSOLUTE
ADDRESS

ADDRESS ANALYSIS ROUTINE (CONT'D)

H INTERLACES

O INTERLACES

SET SWITCH TO
13 SEARCH RIGHT
HALF OF TABLE

O—E)—0

ALL LOWER LEVEL ROUTINES
RETURN HERE. THIS IS ALWAYS
SET TO RE'!I'URN TO PROPER PLACE

N MAIN CHAIN

b

R INTERLACES

P INTERLACES

SET SWITCH TO
SEARCH LEFT
HALF OF TABLE

T.Z. INTERLACES

RESTRICT ROUTINE

DF T#PMINE SHIF T
TR 31T PATTERN

SLOW
£ W.S. deprl 4000 0 —> T
K. 41 aprA -9
S ADDRESS W.S. 80 005
<
FAST
MULTIPLY DIGITS 1 AND 2
0-05 Lo rA—-4000 L BY ARE IN tA
- W.5. 80 [A i [02

S|

L

MULTIPLY
W.s. 80 +
@"‘ GABY T tAmmrA rAomws 81T 2

DETERMINE
BIT TO BE
BUFFED

#
1 Xedr A [e A
@ EXTRACT L A0
58T 18T 2BIT
—r X - ¢ X —rX
BIT IS NOW f f
IN PROPER
POSITION
CSESES 3/?{'}:11- rX = W.S. 4
O e] vs H it HE-O
EXECUTE
SLOW
= FORM PICKUP|
. > X i 199 - Am | | |_|PIcKUP LINE
@——Gs. 80: 0. Xz W 73 @ W.s. 72 A"*)%gggsf*‘f FROM TABLE '@
FasT | *
SAVE LAST 7 prye
BITSOF rX ™1 w.s. 73
- A

STORE LINE
BACK IN RES 2N
TABLE

FT
BAND RELATIVE ADDRESS
59 - UPDATING PATTERN
82 — BAND RELATIVE LIMIT

s W.S. 80 —0 OR 5 FOR SHIFT
W.S. 81 — AMOUNT OF SHI
W.S.
W.S.

o
rl

WAS THE

P LOCATION
AVAILABLE?,

B

(R

i3

MEMORY AVAILABILITY ROUTINE - PART ONE

NORMAL G
-

NORMAL PATH

BAND
rl=—#MAR 2N RELATIVE
W.S, 7= X ADDRESS

-5, 4

Y 0000 — 0=»CTR, TO 800 FOR 200 LIMIT FOR
ABSOLUTE ADD, |—— SHIFT UPDATING [~ ADDR. INCREM, —— TABLE SEARCH [—
COUNTER PATTERN .S, 29 — A
200 FOR VALUE [seT For USE A, iX, rl.
1.2 OF BIT — 2a — TO SET FAST 6.9
— X - Li. b, 2 -
- N’
50 FOR VALUE SET FOR KEEP LAST 4000—»ABS. 5—CTR, TO 200 FOR ADDR. 50 FOR
1.3 OF BIT - 2b 7 BITS OF [—— ADDRESS CTR. [—{ SHIFT UPDATING [——] INCREMENT [~ LIMIT
— X —rL W.S, 4 A PATTERN —W.5. 29 —=rA
NORMAL .
FILL DIGITS H-H
o 6- IHO w‘rH — ——rl
USE W.S. 4 USE J TO CREATE STOR (] e
2 TO SET - ADDRESS OF IN 5. 40 FOR 1 I \LSSRE ENTIRE
WORD IN TABLE 3 =
J AND K UPDATING \\. FAST FREE ADDRESS
S,
17N 16N @———— SLy
ENTRANCE FOR O LINE LEGEND: INDICATORS
s w.S. 4 Izanpornry s'ovu%e at exit: W.5. 13 ‘l)— Fast storage
SET FOR ET ress assigned to entry — Normal storage
MAR 90 5.1a 500 L SETSI AR being processed W.S. 63 9999 — Initial sefting
4N X OR b Ww.s. 7 Tentative best normal band 1 — Fast storage gone
/ — lTevel 0 - Normal storage gone
33N w.5 11 Current table SO word W.s, 67 0 — Initial setting
w.S. 12 Fﬁr% and P Lugs: address o; tag 1 - No consecutive normal addresses
which is not being pracesse. 2 - No consecutive fast add
ENTRANCE FOR P LINE W.S. 28 A — Absolute address counter 9999 — No consecutive addresses i memory
YES W.S, 29 a — Value of a digit in table word
W.5. 38 b — Value of a bit in table word
MAR W.s. 7 IS BAND we)k QESTORE SET FOR W.S.39 | - Band relative address
N 9b _— REL, ADD. J——1 1¥ 5"’7 — PN 5 b 3.1 W.S.40 Updated table word
! > > WS, 41 Li~- Limit of table
W.S, 48 Storage for tentative S address
NO 3N w.s, 68 K — Counter used to determine when
part of storage has been checked
W.S, 69 Bit in position for restricting and
w.s, 7.1 updating
RETURN LINE — WS,
IS IN X §.7
0 9 8 7 6 5 4 3 2 1
> 50 000 o0 | 08 | 16 | 24 | 32 |4000]4200]4400[4600] 4800
STORE rL CHECK NORMAL 02 | 10 {18 | 26 | 34 |4050]4250]4450]4650| 4850[{ o000
22N — IN EXIT w.so._°627 : w'S:o“(! ZEROS MEMORY 04 | 12 | 20 | 28 | 36 | 4100} 4300]4500]4700] 4900
FROM MAR =l 06 | 14 | 22 | 30| 38 |4150] 4350] 4550]4750] 4950
= <
NO CONSECUTIVE | check l @_ FAST
ADDRESSES EAST e ACCESS
MEMO
EMORY L | E)&l{RFROM NORMAL BANDS
W.5, 13 R = ACCESS
FREE ADDR’S \ BANDS
FOR Q AND P 3
049
2 W.5, 48 W.S, 4 IAMAAAMAAAAAAAAANAAMANAAAAAANAAN
R —_L | | = [“
s SET 8.2a . L—.S. 4
(MAB4N) XS, 12 }
. P
MAR : W.s. 4 we. 48 | MABAN 0 199
N — L —rX
TABLE SO

28

L*R4L D

MEMORY AVAILABILITY ROUTINE-PART ONE (CONT’D)

NO FREE PREPARE TO
P ADDRESS SEARCH NEXT
FOR Q. ADDRES LINE FORQ EAST s YvES
YES e i+ E;‘gl_%': s‘rHoARSA:\SLELA??FEA Li— s SEARCH
Lusx. 9 ADDR 115 ADD 5 TO —_ BEEN SEARCHED" .S 4 R
BIT T SHIET 4000
U.I?DATE ORGERMrA =X
w.s, 40 MAREN
MAR6N NORMAL KL'
i
UNCHANGED 0 —> RA x
oromR AT X - 19N MABIN .5, 28
MAREN NO o
WAS ONE PART — WHICH PART —
NO CONSECUTIVE NO CONSECUTIVE 5. 13 ORY X ? 1.8b ¥
ADDRESSES IN AT LEAST —] X .S, 63 1S NO# FULL? Bb 1 so13
ONE PART OF MEMORY ADBRESSER N RS Save %.5.13: 0

3N I #
<
ONE SECTION OF
e 1 O MEMORY (S FULL;
S TRY OTHER.
NO CONSECUTIVE
REE ADDRESSES
WHICH PART
e s
0-09999 ERROR WS T3 0 NORMAL
l—d —-w.s. 12 —{ cODE E
- W.S. 67 X
NO CONSECUTIVE
B ACORESSES 20N 23N ERROK 0-09999
IN FAST 1.9 S?»D’E(6.7 W5 4
0-62 || ©0-0 6.6 rLemW.S. 67 P
—r —-r A B rA=pt{.S. 13
MEMORY AVAILABILITY ROUTINE-PART TWO
= = = #
A= | | BUFF BUFF BUFF J
L 50-0 rA sl 400 rA sl 20—0 rA : rb B"{)J_FOF rA i rb ;;:)Z 8.1
l; |= I * I -
S B 2 INCREMENT SHIFT
X X X COUNTER FOR
UPDATING PATTERN
0> b b Ata L=
rA A 8.1 rA - A ! A Sk, Ml/l:IB
USE "'s's"” T0
BUFF W.5. 11 REPLACE
@—ﬂ R e TR [—— INTO UPGATING WORD IN EXIT Yin
" WORD PATTERN TABLE
-
A+ At X - A =>
- W.S. 4 A SRP 1 w.s.69
FAST
MABAN S .
. w.S. 4 w.S. 48
W.S, 48 S
- - 200 W.S.6: 199 tl
®— w.s. 48 X 5.4
T RETURN IS TO
MARTN LF P
NORMAL - 199 RES LOCATION 15
5.4 N FOUND FOR 0O;
IF NOT, RETURN
1S TO MAR6N
. ws. 4
il SAVE LAST AL
—- ¥%.S5. 39
- A 9BITS A

L WALy O

£8

TEMPORARY TAG SEARCH

D;

TAG HAS BEEN
ASSIGNED

BUILD ORDER
T0

ADDRESS FROM

PICK TABLE $3
ABSOLUTE ADDRESS —>- W.5, 4
THIS IS A
NEW TAG
N’F TAGS

STORE ADDRESS
IN FIRST FREE

$1 000

1299

TABLE LOCATION

- O
9999 = ERROR
LAST ASSG, fdt CODE ECP
ADDRESS B
TTS

STORE i + 1 MODIFY INSTRUCTION QORP RESTORE
IN FIRST FREE =t SO THAT W.5, 1 —{ SETIN - ORDERS
TABLE LOCATION WILL BE USED w.. TO FILE
BUILD ORDER BUFF TAG IN
T TG STORE k= W.S. 10 WIT| STORE IN T
NEW TAG ADDRESS IN W.5. 4 TABLE s3
ABSOLUTE
TAG ADDRESS
Z‘lélzalz‘[zs["' [ufr]r]rs] s2o00f e [o] |- I oJe]a]e] uJ AELIARANDNAEEAE
ABSOLUTE ABSOLUTE
PERMANENT TAG ADDRESS ADDRESS TEMPORARY TAG
TABLE S1 TAGS TAGS TABLE S3
300 WORDS 000 150 50 WORDS
INITIALLY FILLED INITIALLY FILLED
WITH H'S , ‘ WITH H'S
52 149 149 299 $3 049
TABLE §1 TABLE §2 TABLE $3

PERMANENT TAG

SEARCH

O =t i

i+

1o
&)

9999 —»- ERROR
LAST ASSG., jrmmreed CODE
ADDRESS A
TAG HAS
BEEN ASSIGNED
DETERMINE TABLE PICK UP STORE iN
$2 ADDRESS OF — ABSOLUTE 4 LAST ASSIGNED
ASSIGNED TAG ADDRESS ADD. LOCATION

THIS IS A
NEW TAG

/

! N,F, TAGS

4
BUILD FILE
l.| ORDER AND |(PTS
STORE TAG 3
\
SETQ
TOP 5)
P
Q
; CONVERT TO MODIFY ORDER
BUILD ORDER RESTORE
[RRER ToriLe New f—f SUER TAR ADDITO -] ORDERS
TAG TO FILE
TABLE 52 52 ADDRESS
?
NO

SUBTRACT 15 1T USE DIFFERENCE SL_w.s. 4
ORIGIN OF HALFWAY TOBUILD FILE |—i 8
TABLE S1 THROUGH TABLE? ORDER l--TABLE 52
YES
SUBTRACT 200 USE DIFFERENCE BUFF .5, 4 ONTO
FROM —— TOBUILD FILE |——{ TABLE 52 LINE &
DIFFERENCE ORDER RESTORE IN TABLE

®

LhbdL 0

PROCESS INTERLACE ENTRY

NUMBER
OF PARTS
'NJSEBLEASE INDICATOR BAND
TYPE OF

LT §

NUMERIC - W.5. 28
ZONE - W.5. 29

STORE
NUMERIC N, |-
BB, AND (

BUILD

PICKUP AND
STORE ORDERS

‘ u LOAD ERASE
PATTERN & DAT

P12

SELECT TABLE S6

A—®

NO

YES

SELECT TABLE $6
LOAD TEMPORARY
STORAGE, ERASE
PATTERN & DATA

SELECT TABLE 35
LOAD TEMPORARY
STORAGE, ERASE
PATTERN & DATA

SELECT TABLE S5
LOAD TEMPORARY
STORAGE, ERASE
PATTERN & DATA

SELECT TABLE BRING OUT ERASE STORE
5. LOAD ERASE TABLE AND - IN
PATTERN & DATA BUFF TABLE
SELECT TABLE S5
LOAD ERASE
PATTERN & DATA
@
. J
@_ 0-0200 1 o0 P12
] -, S, 28

RESTRICT UNPRIMED,

PRIMED, AND DUOPRIMED

FOR R.H. AND O
INTERLACES

RESTRICT NUMERIC]
AND ZONE LOCATIONS
OR R.H. AND
INTERLACES

P12

RESTRICT PRINT
INTERLACE
LOCATIONS

PROCESS SPECS ENTRY ROUTINE

[x[rfn]n

annooni

w.S. 28

GLEEELILL -

W.S. 29

STORE
xnnnn in W.S, 38
tittt in WS, 39

TEST TABLE VO

T
LOCATIO}:I’SAGAINST TEST AGAINS

TABLE LIMIT

INCREMENT
TABLE LINE
COUNTER

"
u

O

BUILD INSTRUCTION
FOR FILING

E
W.5. 38 IN TABLE VO
W.S. 39 IN TABLE V1

SPECS TABLE SEARCH ROUTINE

>

V0 000

v0 019

TEST X6 SPECS
AGA!NST TABLE

TEST AGAINST "‘T\%‘I{EEMLEIT\IE
TABLE LIMIT COUNTER

STORE
TABLE
ENTRY

ERROR CODE E
9999=—=-W.5. 4

©ro<<

ARARANDAND o RS
SPECS X-6
ADDRESSES ADDRESSES
V1019
TABLE'vV0 TABLE V1

INITIAL FILL TABLES ROUTINE

et
TABLE SO

H'S=—m-TABLES A'S—m-TABLES'
sl,Asgbsé,] vo, $5, 56, AND S7

—

PREPARE TABLE ENTRY ROUTINE

TYPE

NUM3ER

ORIGIN

NUMBER
OF ENTRIES

N s

T o] ws

PROCESS TAG EQUALS ROUTINE

TAG

— e,

LOCATION

[Tolole] {sguee - us

28
29

N NO NO v _ K
47 -
; ERASE ALL ABSOLUTE TAG—>W.S. 0 TEST Z SET EXIT SET KWS
. w.s. 28 TABLE NUMBER | origin. || TABLE §? TABLE U? APD 10 ADDRESS - s 016 EARA TEST FOR
- TAS A TOW.S. 0 1 10 Ws BUT PISITY RA: 2 RA: 4 TO W.5. 0 SWs s ZZZZZNNNNN FOR NUMERIC IN AAR MAR 3
YES YES I* PERM. TAG #
w
SET - RESET
! AD% 200 PTS 2F (P TS PTS 2F -@
TO W, 152 16 b
BUILD INSTRUCTION CONSTRUCT SET K
FILE ENTRY
1 TO FILE TABLES? |— TABLE = }—F) SWITCHES
ENTRY ENTRY IN TABLE IN KWS
PROCESS TABLE RESTRICT ROUTINE 5 SIE1 W A PTE
SWITCHES
IN KWS
NUMAER OF NUMBER OF ORIGIN
ENTRIES ENTRIES —-W.S. 4
- A - 4.5 29 rA
BAND RELATIVE ADDRESS ROUTINE
ADD (A TO SUBTRACT rX SEND
200 rnal N LI/ A N SN O FROM ORIGINALL 1 RESULT TO 200
< g : SL X OPERAND X
INCREMENT TEST ORIGIN BAND REL. ADD. —
COUNTER NUMBER OF + INCREMENT |— + INCREMENT ws e
3 RESTRICTS, =W A .5, 81 5.
= EDIT A, M OR C ROUTINE
<
W.S. 41 4999) w.s, 23 SR A w.s, 22 SR
FoA A '—'{ ’ —-—X A ?
W.S. B2 — 3AND
> RELATIVE LIMIT
WILL BE 50
WS 4 OR 200 /
5000 /
WS 4 /
PREPARE RESTRICT ENTRY ROUTINE / ws 25 . A ws. 24 A
/ ° A — X — > A W.s. 0
INCREMENT ORIGIN
P ——— ! //
CTT L L » j
/
NUMBER 0
OF ENTRIES / // N
/s \
ORIGIN NUMBER INCREMENT ens 14 SET FOR o
—>W.5. 39 F— ->ws 29 - W.S. 28 \ —
\
\
\ w.s. 25 W.s. 24
\ : X] —_-rA Sbs
/
EDC
o
~T N
> SET FOR o
— L

PRINTER INTERLACE ROUTINE

1AH

)
o
SET CONNECTOR DIGITS 3 & 4 ADDEND SET CON. FOR
FOR LINE FROM FROM TABLE i 1 "LINE FrRom |- °
TABLE $6 = W.5. 4 —A TABLE v4
SPECIAL EXIT
ERROR 9999
CODE J — .5, 4
RA!
ADD COL. 1-3 app coL.4-6 || ERASE ADD rA
TOW.S. 4 TOW.S. 4 o7 TOW.S. 4
RPU OUTPUT INTERLACE ROUTINE
T CON. DIGITS 1 & 2 FROM ADDEND SET CON. FOR
FOR LINE_FROM TABLE—=W.S, 4 _10 H TLINEFROM |-
TABLE 55 DIGIT 9~mW.5. 11 - X TABLE V3
SPECIAL
EXIT
app100 || ApDea
TO A TO W.5. 4
READER INTERLACE ROUTINE
SET CON. FOR DIGITS 1 & 2 FROM
STORE 01X
LINE FROM TABLE==W.5, 4 H =
y TABLE 56 DIGIT 10=W.5. 11 ABDEND 100—>-rA e
SPECIAL EXIT
RPU INPUT INTERLACE ROUTINE
SET CON. FOR DIGITS 38 4 FROM STORE ADD OrA 1
TABLE—=W.5. DDEND | —O
TABLE $5 DIGIT 10 W.5. 11 100 rX B
SPECIAL
T
o W.S. 39 +
W.5. 40
— rA
/
SET CON. FOR
‘ LINE FROM
TABLE V2
2b :D
L]
~
~
F WS, 39 + W.S. 4t
", W.5. 41 TA = 0
—A W.S. 4

TAPE INTERLACE ROUTINE

SPECIAL EXIT.

NO
SET CON, ISITAT DIGITS 7 & 8
FOR LINE 2}— FROM TABLE SR oha
FROM TABLE $5 \NTERLACE - W.5. 4 i
YES
DIGITS 5 & 6
CALCULATE FROM TABLE |
INTERLACE -W.5. 4
POSITION
MULTIPLY BY Al
0-0A58 A
Zs->rA 1K - ADD rA
2=pmrl rA TOW.S. 4
ERASE ALL BUT|
X | {1 ApDs LAST NINE BITE
A TO rA OF rA
INTERLACE ROUTINE 1
USE N, AND CON. STORE TABLE
TO GET LINE FROM—— EIN 1a1
TABLE S5 OR S6 r
INTERLACE ROUTINE 2
PUT Z, & N, sz N
——] IN FORM 37 3
Z; N300 >0
IYES
TA =
W.5. 10
USE Ny N, TO) 0-010
FORM ADDEND A — W.S. 42
- A
NORMAL EXIT
0-015
->W.S. 42
SPECIAL
EXIT

INTERLACE ROUTINE 3

1A3

USE CORRECTED
ADDEND AND CON.

TO SELECT TABLE
LINE

— LIN

rA

STORE TABLE
EIN

RV

INTERLACE ROUTINE 4

NO

rAwm ¥.S, 38
rX—p .5, 39

INTERLACE ROUTINE 5

§5 000

S5 009

(=]

1S ADDEND
>17?

ADDEND
-10

X

W,S. 38—a-W.S, 41
W.S. 39—w.S, 40

ADDEND
-12

W.S, 39-W.5, 41
W.S. 38-a=W.S. 40

SET 2a SET 20

AND 4a AND 4a

IN IAH=R IN IAH-R
3

TABLE S5

§6 000

56 009

1A4

ERASE
DIGITS
1-8

——

STORE IN
W.S. 39

TABLE S6

MODIFY LATENCY COUNTER ROUTINE

O

rX SETS

OP CODE
INDICATOR

NO YES
STORE DIGITS 1-3 SToRE
m—0 oP CODE OP CODE “m" MODIFIE
Mi-c DIGIT 5-%01714 SPACES? cLoCK 0 o
comW.S. 84 $ IN01Z12 SE? A
YES
“m MODIFIER
+ cLoCK
T
1=
X
O0—»COUNTER DIGITS 1-3 rA 4 A
1 ADJUST INDICATOR |—] “OF *ic” LAST ASSG. LAST ASSG
01204 A ADDRESS ADDRESS
NO NO.
-
BAND RELATIVE is DIGIT 3 st SET BAND REL.
4 ADDRE S5 OF OP CODE 4b |—d “ADD.—-
S W.S. 85 m? ? INPDC cLocK

EDIT X ROUTINE

%1

SET
16 IN EMP
N EDM

SET
1b N CEP:
1b IN ECC

LINE

EDIT CLOCK
—{ : — FOR PAP
PRINT Te

ﬂENTER ED

NO
TENT. BEST ADD ‘e OF
EDX R o opTion? 1O TENT, BEST
- NORMAL
YES
BAND REL.
ADD.—»TENT.
BEST. NORMAL
UPDATE CLOCK ROUTINE
YES YES
ubC ENTERED SET la SE
C FROM EMP? IN EMP OPTION?
NO
YES
v
ENTERED SET Ta m" MODIFIER
OF cLoCK
FROM CEP? IN CEP '@ et 25K x

SET 4.1a
IN PDC

QOM EDM?

NO

YES

1S ADJUSTED
ADDRESS TO BE
NEW CLOCK?

LAST ASSG.
ADDRESS
—rA

PREADJUSTED
READING

— A

YES

SL2 W.S. 5
ERASE 2-10
— A

1$ THIS INSTR.
ACTION
CODE5?

INO

SET A
IN
AC26N

_@

	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88

